Current Reviews in Musculoskeletal Medicine

, Volume 10, Issue 1, pp 131–140 | Cite as

Osteochondral lesions of the talus in the athlete: up to date review

  • Yoshiharu Shimozono
  • Youichi Yasui
  • Andrew W. Ross
  • John G. Kennedy
Foot and Ankle Sports Medicine (M Drakos, section editor)
  • 164 Downloads
Part of the following topical collections:
  1. Topical Collection on Foot and Ankle Sports Medicine

Abstract

Purpose of review

Osteochondral lesions of the talus (OLT) are common injuries in athletes. The purpose of this study is to comprehensively review the clinical results and return to sport capacity in athletes following treatment for OLT.

Recent findings

Reparative procedures, such as bone marrow stimulation, and replacement procedures, such as autologous osteochondral transplantation, provide good clinical outcomes in short- and mid-term follow-up in the athlete. Recently, biological augmentation and scaffold-based therapies have been shown to improve clinical and radiological outcomes in OLT in both the general population and athletes.

Summary

Most studies are of a low level of evidence. Studies analyzing the return to sport capability in athletes are further lacking. High-level evidence and well-designed clinical trials are required to establish the most effective treatment protocol.

Keywords

Osteochondral lesions of talus Bone marrow stimulations Autologous osteochondral transplantation Biologic 

Notes

Compliance with ethics standards

Conflict of interest

Yoshiharu Shimozono, Youichi Yasui, and Andrew W. Ross declare that they have no conflict of interest. John G. Kennedy reports grants from Arteriocyte, Inc., The Ohnell Family Foundation, and Mr. and Mrs. Michael J. Levitt outside of the submitted work. He is a board member for the European Society of Sports Traumatology, Knee Surgery, and Arthroscopy (ESSKA) and a finance board member of the International Cartilage Repair Society (ICRS), and he is on the committee for the American Orthopaedic Foot & Ankle Society (AOFAS) Awards and Scholarships.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN. Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot ankle Int. 2000;21(2):119–26.CrossRefPubMedGoogle Scholar
  2. 2.
    O'Loughlin PF, Heyworth BE, Kennedy JG. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med. 2010;38(2):392–404.CrossRefPubMedGoogle Scholar
  3. 3.
    Nelson AJ, Collins CL, Yard EE, Fields SK, Comstock RD. Ankle injuries among United States high school sports athletes, 2005-2006. J Athl Train. 2007;42(3):381–7.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18(2):238–46.CrossRefPubMedGoogle Scholar
  5. 5.
    Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M. Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med. 2012;40(3):534–41.CrossRefPubMedGoogle Scholar
  6. 6.
    O'Loughlin PF, Hodgkins CW, Kennedy JG. Ankle sprains and instability in dancers. Clin Sports Med. 2008;27(2):247–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Handoll HH, Rowe BH, Quinn KM, de Bie R. Interventions for preventing ankle ligament injuries. Cochrane Database Syst Rev. 2001;3:CD000018.Google Scholar
  8. 8.
    Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008;24:106–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Choi WJ, Park KK, Kim BS, Lee JW. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med. 2009;37(10):1974–80.CrossRefPubMedGoogle Scholar
  10. 10.
    Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage. 2011;2:327–36.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yoon HS, Park YJ, Lee M, Choi WJ, Lee JW. Osteochondral autologous transplantation is superior to repeat arthroscopy for the treatment of osteochondral lesions of the talus after failed primary arthroscopic treatment. Am J Sports Med. 2014;42:1896–903.CrossRefPubMedGoogle Scholar
  12. 12.
    Yasui Y, Ross AW, Murawski CD, Kennedy JG. Authors’ reply. Arthroscopy. 2016;32(8):1491–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Verhagen RA, Struijs PA, Bossuyt PM, van Dijk CN. Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin. 2003;8(2):233–42.CrossRefPubMedGoogle Scholar
  14. 14.
    van Bergen CJ, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GM, van Dijk CN. Arthroscopic treatment of osteochondral defects of the talus outcomes at eight to twenty years of follow-up. J Bone Joint Surg Am. 2013;95-A:519–25.CrossRefGoogle Scholar
  15. 15.
    • Polat G, Erşen A, Erdil ME, Kızılkurt T, Kılıçoğlu Ö, Aşık M. Long-term results of microfracture in the treatment of talus osteochondral lesions. Knee Surg Sports Traumatol Arthrosc. 2016;24(4):1299–303. Long-term clinical and radiographic outcomes of arthroscopic debridement and microfracture for OLT. CrossRefPubMedGoogle Scholar
  16. 16.
    Saxena A, Eakin C. Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med. 2007;35(10):1680–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Seijas R, Alvarez P, Ares O, Steinbacher G, Cuscó X, Cugat R. Osteocartilaginous lesions of the talus in soccer players. Arch Orthop Trauma Surg. 2010;130(3):329–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, Dopirak RM. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee KB, Bai LB, Yoon TR, Jung ST, Seon JK. Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med. 2009;37(Suppl 1):63S–70S.CrossRefPubMedGoogle Scholar
  20. 20.
    Becher C, Driessen A, Hess T, Longo UG, Maffulli N, Thermann H. Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up. Knee Surg Sports Traumatol Arthrosc. 2010;18:656–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg. 1994;2(4):192–201.CrossRefPubMedGoogle Scholar
  22. 22.
    Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res. 1999;365:149–62.CrossRefGoogle Scholar
  23. 23.
    Duncan H, Jundt J, Riddle JM, Pitchford W, Christopherson T. The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg Am. 1987;69(8):1212–20.CrossRefPubMedGoogle Scholar
  24. 24.
    Pugh JW, Radin EL, Rose RM. Quantitative studies of human subchondral cancellous bone. Its relationship to the state of its overlying cartilage. J Bone Joint Surg Am. 1974;56(2):313–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Orth P, Meyer HL, Goebel L, Eldracher M, Ong MF, Cucchiarini M, Madry H. Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. J Orthop Res. 2013;31(11):1772–9.PubMedGoogle Scholar
  26. 26.
    Reilingh ML, van Bergen CJ, Blankevoort L, Gerards RM, van Eekeren IC, Kerkhoffs GM, van Dijk CN. Computed tomography analysis of osteochondral defects of the talus after arthroscopic debridement and microfracture. Knee Surg Sports Traumatol Arthrosc. 2016;24(4):1286–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, Hurtig M, Buschmann MD. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29(8):1178–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Marchand C, Chen G, Tran-Khanh N, et al. Microdrilled cartilage defects treated with thrombin solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls. Tissue Eng Part A. 2012;18(5–6):508–19.CrossRefPubMedGoogle Scholar
  29. 29.
    Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med. 2014;42(11):2741–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H. Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med. 2016;44(1):209–19.CrossRefPubMedGoogle Scholar
  31. 31.
    Kok AC, Tuijthof GJ, den Dunnen S, et al. No effect of hole geometry in microfracture for talar osteochondral defects. Clin Orthop Relat Res. 2013;471(11):3653–62.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hannon CP, Murawski CD, Fansa AM, Smyth NA, Do H, Kennedy JG. Microfracture for osteochondral lesions of the talus: a systematic review of reporting of outcome data. Am J Sports Med. 2013;41(3):689–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.CrossRefPubMedGoogle Scholar
  34. 34.
    Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F. Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med. 2009;37(Suppl 1):112S–8S.CrossRefPubMedGoogle Scholar
  35. 35.
    Nam EK, Ferkel RD, Applegate GR. Autologous chondrocyte implantation of the ankle: a 2- to 5-year follow-up. Am J Sports Med. 2009;37(2):274–84.CrossRefPubMedGoogle Scholar
  36. 36.
    Niemeyer P, Salzmann G, Schmal H, Mayr H, Südkamp NP. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc. 2012;20:1696–703.CrossRefPubMedGoogle Scholar
  37. 37.
    Battaglia M, Vannini F, Buda R, Cavallo M, Ruffilli A, Monti C, Galletti S, Giannini S. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: mid-term T2-mapping MRI evaluation. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1376–84.CrossRefPubMedGoogle Scholar
  38. 38.
    Kwak SK, Kern BS, Ferkel RD, Chan KW, Kasraeian S, Applegate GR. Autologous chondrocyte implantation of the ankle: 2- to 10-year results. Am J Sports Med. 2014;42(9):2156–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Giza E, Sullivan M, Ocel D, Lundeen G, Mitchell ME, Veris L, et al. Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int. 2010;31:747–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Schneider TE, Karaikudi S. Matrix-induced autologous chondrocyte implantation (MACI) grafting for osteochondral lesions of the talus. Foot Ankle Int. 2009;30:810–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Nehrer S, Domayer SE, Hirschfeld C, Stelzeneder D, Trattnig S, Dorotka R. Matrix-associated and autologous chondrocyte transplantation in the ankle: clinical and MRI follow-up after 2 to 11 years. Cartilage. 2011;2(1):81–91.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Aurich M, Bedi HS, Smith PJ, Rolauffs B, Mückley T, Clayton J, Blackney M. Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. Am J Sports Med. 2011;39(2):311–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Magnan B, Samaila E, Bondi M, Vecchini E, Micheloni GM, Bartolozzi P. Three-dimensional matrix-induced autologous chondrocytes implantation for osteochondral lesions of the talus: midterm results. Adv Orthop. 2012;2012:942174. doi: 10.1155/2012/942174.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Giannini S, Buda R, Ruffilli A, Cavallo M, Pagliazzi G, Bulzamini MC, Desando G, Luciani D, Vannini F. Arthroscopic autologous chondrocyte implantation in the ankle joint. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1311–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Kubosch EJ, Erdle B, Izadpanah K, Kubosch D, Uhl M, Südkamp NP, Niemeyer P. Clinical outcome and T2 assessment following autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Int Orthop. 2016;40(1):65–71.CrossRefPubMedGoogle Scholar
  46. 46.
    Wiewiorski M, Miska M, Kretzschmar M, Studler U, Bieri O, Valderrabano V. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus. Clin Radiol. 2013;68(10):1031–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Valderrabano V, Miska M, Leumann A, Wiewiorski M. Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med. 2013;41(3):519–27.CrossRefPubMedGoogle Scholar
  48. 48.
    Giannini S, Buda R, Vannini F, Di Caprio F, Grigolo B. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: surgical technique and results. Am J Sports Med. 2008;36(5):873–80.CrossRefPubMedGoogle Scholar
  49. 49.
    Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467(12):3307–20.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, Vannini F. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41(11):1196–203.CrossRefPubMedGoogle Scholar
  51. 51.
    Buda R, Vannini F, Cavallo M, Baldassarri M, Natali S, Castagnini F, Giannini S. One-step bone marrow-derived cell transplantation in talar osteochondral lesions: mid-term results. Joints. 2014;1(3):102–7.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Giannini S. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop. 2015;39(5):893–900.CrossRefPubMedGoogle Scholar
  53. 53.
    Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Vannini F. One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med. 2013;41(3):511–8.CrossRefPubMedGoogle Scholar
  54. 54.
    • Vannini F, Cavallo M, Ramponi L, Castagnini F, Massimi S, Giannini S, Buda R. Return to sports after bone marrow-derived cell transplantation for osteochondral lesions of the talus. Cartilage. 2016; doi: 10.1177/1947603516642574. Describes the return to sports of athletes with OLT treated with a one-step BMDCT procedure. Google Scholar
  55. 55.
    Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63.CrossRefPubMedGoogle Scholar
  56. 56.
    Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med. 2009;37(Suppl 1):167S–76S.CrossRefPubMedGoogle Scholar
  57. 57.
    Hangody L, Dobos J, Baló E, Pánics G, Hangody LR, Berkes I. Clinical experiences with autologous osteochondral mosaicplasty in an athleticpopulation: a 17-year prospective multicenter study. Am J Sports Med. 2010;38(6):1125–33.CrossRefPubMedGoogle Scholar
  58. 58.
    Scranton Jr PE, Frey CC, Feder KS. Outcome of osteochondral autograft transplantation for type-V cystic osteochondral lesions of the talus. J Bone Joint Surg Br. 2006;88(5):614–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Flynn S, Ross KA, Hannon CP, Yasui Y, Newman H, Murawski CD, Deyer TW, Do HT, Kennedy JG. Autologous osteochondral transplantation for osteochondral lesions of the talus. Foot Ankle Int. 2016;37(4):363–72.CrossRefPubMedGoogle Scholar
  60. 60.
    • Fraser EJ, Harris MC, Prado MP, Kennedy JG. Autologous osteochondral transplantation for osteochondral lesions of the talus in an athletic population. Knee Surg Sports Traumatol Arthrosc. 2016;24:1272–9. Describes clinical outcomes and return to sports in an athletic population treated with AOT for OLT at a midterm follow-up. CrossRefPubMedGoogle Scholar
  61. 61.
    Paul J, Sagstetter M, Lämmle L, Spang J, El-Azab H, Imhoff AB, Hinterwimmer S. Sports activity after osteochondral transplantation of the talus. Am J Sports Med. 2012;40(4):870–4.CrossRefPubMedGoogle Scholar
  62. 62.
    Fansa AM, Murawski CD, Imhauser CW, Nguyen JT, Kennedy JG. Autologous osteochondral transplantation of the talus partially restores contact mechanics of the ankle joint. Am J Sports Med. 2011;39(11):2457–65.CrossRefPubMedGoogle Scholar
  63. 63.
    Lamb J, Murawski CD, Deyer TW, Kennedy JG. Chevron-type medial malleolar osteotomy: a functional, radiographic and quantitative T2-mapping MRI analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21:1283–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Henkelmann R, Schmal H, Pilz IH, Salzmann GM, Dovi-Akue D, Südkamp NP. Prospective clinical trial of patients who underwent ankle arthroscopy with articular diseases to match clinical and radiological scores with intra-articular cytokines. Int Orthop. 2015;39(8):1631–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Adams Jr SB, Nettles DL, Jones LC, Miller SD, Guyton GP, Schon LC. Inflammatory cytokines and cellular metabolites as synovial fluid biomarkers of posttraumatic ankle arthritis. Foot Ankle Int. 2014;35(12):1241–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Adams SB, Setton LA, Bell RD, Easley ME, Huebner JL, Stabler T, Kraus VB, Leimer EM, Olson SA, Nettles DL. Inflammatory cytokines and matrix metalloproteinases in the synovial fluid after intra-articular ankle fracture. Foot Ankle Int. 2015;36(11):1264–71.CrossRefPubMedGoogle Scholar
  67. 67.
    Tibesku CO, Daniilidis K, Szuwart T, Jahn UR, Schlegel PM, Fuchs-Winkelmann S. Influence of hepatocyte growth factor on autologous osteochondral transplants in an animal model. Arch Orthop Trauma Surg. 2011;131(8):1145–51.CrossRefPubMedGoogle Scholar
  68. 68.
    Woelfle JV, Reichel H, Javaheripour-Otto K, Nelitz M. Clinical outcome and magnetic resonance imaging after osteochondral autologous transplantation in osteochondritis dissecans of the talus. Foot Ankle Int. 2013;34(2):173–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Savage-Elliott I, Smyth NA, Deyer TW, Murawski CD, Ross KA, Hannon CP, Do HT, Kennedy JG. Magnetic resonance imaging evidence of postoperative cyst formation does not appear to affect clinical outcomes after autologous osteochondral transplantation of the talus. Arthroscopy. 2016 [in press]Google Scholar
  70. 70.
    Gül M, Çetinkaya E, Aykut ÜS, Özkul B, Saygılı MS, Akman YE, Kabukcuoglu YS. Effect of the presence of subchondral cysts on treatment results of autologous osteochondral graft transfer in osteochondral lesions of the talus. J Foot Ankle Surg. 2016Google Scholar
  71. 71.
    Valderrabano V, Leumann A, Rasch H, Egelhof T, Hintermann B, Pagenstert G. Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med. 2009;37(Suppl):105S–11S.CrossRefGoogle Scholar
  72. 72.
    Fraser EJ, Savage-Elliott I, Yasui Y, Ackermann J, Watson G, Ross KA, Deyer T, Kennedy JG. Clinical and MRI donor site outcomes following autologous osteochondral transplantation for talar osteochondral lesions. Foot Ankle Int. 2016Google Scholar
  73. 73.
    Bisicchia S, Rosso F, Amendola A. Osteochondral allograft of the talus. Iowa Orthop J. 2014;34:30–7.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Gross AE, Agnidis Z, Hutchison CR. Osteochondral defects of the talus treated with fresh osteochondral allograft transplantation. Foot Ankle Int. 2001;22(5):385–91.CrossRefPubMedGoogle Scholar
  75. 75.
    Raikin SM. Fresh osteochondral allografts for large-volume cystic osteochondral defects of the talus. J Bone Joint Surg Am. 2009;91-A:2818–26.CrossRefGoogle Scholar
  76. 76.
    Görtz S, De Young AJ, Bugbee WD. Fresh osteochondral allografting for osteochondral lesions of the talus. Foot Ankle Int. 2010;31(4):283–90.CrossRefPubMedGoogle Scholar
  77. 77.
    Hahn DB, Aanstoos ME, Wilkins RM. Osteochondral lesions of the talus treated with fresh talar allografts. Foot Ankle Int. 2010;31(4):277–82.CrossRefPubMedGoogle Scholar
  78. 78.
    Adams Jr SB, Viens NA, Easley ME, Stinnett SS, Nunley 2nd JA. Midterm results of osteochondral lesions of the talar shoulder treated with fresh osteochondral allograft transplantation. J Bone Joint Surg Am. 2011;93(7):648–54.CrossRefPubMedGoogle Scholar
  79. 79.
    El-Rashidy H, Villacis D, Omar I, Kelikian AS. Fresh osteochondral allograft for the treatment of cartilage defects of the talus: a retrospective review. J Bone Joint Surg Am. 2011;93-A:1634–40.CrossRefGoogle Scholar
  80. 80.
    Haene R, Qamirani E, Story RA, Pinsker E, Daniels TR. Intermediate outcomes of fresh talar osteochondral allografts for treatment of large osteochondral lesions of the talus. J Bone Joint Surg Am. 2012;94:1105–10.CrossRefPubMedGoogle Scholar
  81. 81.
    Liu H, Zhao Z, Clarke RB, Gao J, Garrett IR, Margerrison EE. Enhanced tissue regeneration potential of juvenile articular cartilage. Am J Sports Med. 2013;41(11):2658–67.CrossRefPubMedGoogle Scholar
  82. 82.
    Namba RS, Meuli M, Sullivan KM, Le AX, Adzick NS. Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Joint Surg Am. 1998;80(1):4–10.CrossRefPubMedGoogle Scholar
  83. 83.
    Adkisson 4th HD, Martin JA, Amendola RL, Milliman C, Mauch KA, Katwal AB, Seyedin M, Amendola A, Streeter PR, Buckwalter JA. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med. 2010;38(7):1324–33.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bonasia DE, Martin JA, Marmotti A, Amendola RL, Buckwalter JA, Rossi R, Blonna D, Adkisson 4th HD, Amendola A. Cocultures of adult and juvenile chondrocytes compared with adult and juvenile chondral fragments: in vitro matrix production. Am J Sports Med. 2011;39(11):2355–61.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Coetzee JC, Giza E, Schon LC, Berlet GC, Neufeld S, Stone RM, Wilson EL. Treatment of osteochondral lesions of the talus with particulated juvenile cartilage. Foot Ankle Int. 2013;34(9):1205–11.CrossRefPubMedGoogle Scholar
  86. 86.
    Drakos MC, Murphy CI. Particulated juvenile articular cartilage allograft transplantation with bone marrow aspirate concentrate for treatment of talus osteochondral defects. Tech Foot Ankle Surg. 2015;14(2):88–93.CrossRefGoogle Scholar
  87. 87.
    Fortier LA, Chapman HS, Pownder SL, Roller BL, Cross JA, Cook JL, Cole BJ. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med. 2016;44(9):2366–74.CrossRefPubMedGoogle Scholar
  88. 88.
    Desai S. Treatment of osteochondral lesions of the talus with marrow stimulation and micronized allograft cartilage matrix: an all-arthroscopic technique. Tech Foot Ankle Surg. 2014;14(3):167–73.CrossRefGoogle Scholar
  89. 89.
    Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706–15.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Smyth NA, Murawski CD, Fortier LA, Cole BJ, Kennedy JG. Platelet-rich plasma in the pathologic processes of cartilage: review of basic science evidence. Arthroscopy. 2013;29(8):1399–409.CrossRefPubMedGoogle Scholar
  91. 91.
    Smyth NA, Haleem AM, Murawski CD, Do HT, Deland JT, Kennedy JG. The effect of platelet-rich plasma on autologous osteochondral transplantation: an in vivo rabbit model. J Bone Joint Surg Am. 2013;95(24):2185–93.CrossRefPubMedGoogle Scholar
  92. 92.
    Guney A, Akar M, Karaman I, Oner M, Guney B. Clinical outcomes of platelet rich plasma (PRP) as an adjunct to microfracture surgery in osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2384–9.CrossRefPubMedGoogle Scholar
  93. 93.
    Görmeli G, Karakaplan M, Görmeli CA, Sarıkaya B, Elmalı N, Ersoy Y. Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial. Foot Ankle Int. 2015;36(8):891–900.CrossRefPubMedGoogle Scholar
  94. 94.
    Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, Stokol T, Cheetham J, Nixon AJ. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92(10):1927–37.CrossRefPubMedGoogle Scholar
  95. 95.
    Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, Low S, Wallin KL, Ragavanaidu K. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 2009;25(12):1391–400.CrossRefPubMedGoogle Scholar
  96. 96.
    Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV, Do HT, O'Malley MJ, Kennedy JG. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016;32(2):339–47.CrossRefPubMedGoogle Scholar
  97. 97.
    Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc 2016Google Scholar
  98. 98.
    van Eekeren IC, Reilingh ML, van Dijk CN. Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. Sports Med. 2012;42(10):857–70.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yoshiharu Shimozono
    • 1
    • 2
    • 3
  • Youichi Yasui
    • 1
    • 2
  • Andrew W. Ross
    • 1
  • John G. Kennedy
    • 1
  1. 1.Hospital for Special SurgeryNew YorkUSA
  2. 2.Department of Orthopaedic SurgeryTeikyo University School of MedicineTokyoJapan
  3. 3.Department of Orthopaedic SurgeryKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations