Advertisement

Current Reviews in Musculoskeletal Medicine

, Volume 10, Issue 1, pp 122–130 | Cite as

Tarsal navicular stress fractures

  • Rachel J. Shakked
  • Emily E. Walters
  • Martin J. O’Malley
Foot and Ankle Sports Medicine (M Drakos, section editor)
  • 423 Downloads
Part of the following topical collections:
  1. Topical Collection on Foot and Ankle Sports Medicine

Abstract

Purpose of review

Navicular stress fractures are common in athletes and management is debated. This article will review the evaluation and management of navicular stress fractures.

Recent findings

Various operative and non-operative adjunctive treatment modalities are reviewed including the relevance of vitamin D levels, use of shock wave therapy and bone marrow aspirate concentrate (BMAC), and administration of teriparatide. Surgical treatment may be associated with earlier return to sports.

Summary

The author’s preferred treatment algorithm with corresponding images is presented which allows for safe and rapid return to activities in the athletic patient. Future research is needed in evaluating the preventative effects of vitamin D and use of other adjunctive treatments to increase the healing rates of this fracture.

Keywords

Navicular Stress fracture Vitamin D 

Notes

Compliance with ethical standards

Conflict of interest

None of the authors has a financial or proprietary interest in the subject matter or materials discussed in the manuscript, including, but not limited to, employment, consultancies, stock ownership, honoraria, and paid expert testimony.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.•
    Mallee WH, Weel H, van Dijk CN, van Tulder MW, Kerkhoffs GM, Lin CW, et al. Surgical versus conservative treatment for high-risk stress fractures of the lower leg (anterior tibial cortex, navicular and fifth metatarsal base): a systematic review. Br J Sports Med. 2015;49:370–6. Systematic review of lower extremity stress fractures showing earlier return to sports after operatively treated navicular stress fractures compared to non-surgical treatment.CrossRefPubMedGoogle Scholar
  2. 2.
    Torg JS, Pavlov H, Cooley LH, Bryant MH, Arnoczky SP, Bergfeld J, et al. Stress fractures of the tarsal navicular. A retrospective review of twenty-one cases. J Bone Joint Surg Am. 1982;64(5):700–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Pearce CJ, Brooks JH, Kemp SP, Calder JD. The epidemiology of foot injuries in professional rugby union players. Foot Ankle Surg : Off J Eur Soc Foot Ankle Surg. 2011;17(3):113–8.CrossRefGoogle Scholar
  4. 4.
    Weel H, Opdam KTM, Kerkhoffs GM. Stress fractures of the foot and ankle in athletes, an overview. Clin Res Foot Ankle. 2014;2(4):160.Google Scholar
  5. 5.
    Mann JA, Pedowitz DI. Evaluation and treatment of navicular stress fractures, including nonunions, revision surgery, and persistent pain after treatment. Foot Ankle Clin. 2009;14(2):187–204.CrossRefPubMedGoogle Scholar
  6. 6.
    Snyder RA, Koester MC, Dunn WR. Epidemiology of stress fractures. Clin Sports Med. 2006;25(1):37–52. viii.CrossRefPubMedGoogle Scholar
  7. 7.
    Hossain M, Clutton J, Ridgewell M, Lyons K, Perera A. Stress fractures of the foot. Clin Sports Med. 2015;34(4):769–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Fitch KD, Blackwell JB, Gilmour WN. Operation for non-union of stress fracture of the tarsal navicular. J Bone Joint Surg Br Vol. 1989;71(1):105–10.CrossRefGoogle Scholar
  9. 9.
    Gross CE, Nunley 2nd JA. Navicular stress fractures. Foot Ankle Int. 2015;36(9):1117–22.CrossRefPubMedGoogle Scholar
  10. 10.•
    McKeon KE, McCormick JJ, Johnson JE, Klein SE. Intraosseous and extraosseous arterial anatomy of the adult navicular. Foot Ankle Int. 2012;33(10):857–61. Cadaver study mapping the arterial supply to the navicular.CrossRefPubMedGoogle Scholar
  11. 11.
    Waugh W. Structural deformities of the outer third of the adult tarsal navicular. Proc Royal Soc Med. 1956;49(11):965–7.Google Scholar
  12. 12.
    Kahanov L, Eberman LE, Games KE, Wasik M. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners. Open Access J Sports Med. 2015;6:87–95.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PM & R : J Injury, Function, Rehab. 2016;8(3 Suppl):S113–24.CrossRefGoogle Scholar
  14. 14.
    Mann G, Hetsroni I, Constantini N, Dolev E, Palmanovich E, Finsterbush A, et al. Navicular stress fractures of the foot. Sports Injuries. 2015;168:2103–13.CrossRefGoogle Scholar
  15. 15.
    Khan KM, Brukner PD, Kearney C, Fuller PJ, Bradshaw CJ, Kiss ZS. Tarsal navicular stress fracture in athletes. Sports Med. 1994;17(1):65–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Bennell K, Matheson G, Meeuwisse W, Brukner P. Risk factors for stress fractures. Sports Med. 1999;28(2):91–122.CrossRefPubMedGoogle Scholar
  17. 17.
    Wright AA, Taylor JB, Ford KR, Siska L, Smoliga JM. Risk factors associated with lower extremity stress fractures in runners: a systematic review with meta-analysis. Br J Sports Med. 2015;49(23):1517–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Ingalls J, Wissman R. The os supranaviculare and navicular stress fractures. Skelet Radiol. 2011;40(7):937–41.CrossRefGoogle Scholar
  19. 19.•
    McCormick JJ, Bray CC, Davis WH, Cohen BE, Jones 3rd CP, Anderson RB. Clinical and computed tomography evaluation of surgical outcomes in tarsal navicular stress fractures. Am J Sports Med. 2011;39(8):1741–8. Case series of 10 operatively treated navicular stress fractures with functional and radiologic outcomes at 42 months.CrossRefPubMedGoogle Scholar
  20. 20.
    Khan KM, Fuller PJ, Brukner PD, Kearney C, Burry HC. Outcome of conservative and surgical management of navicular stress fracture in athletes. Eighty-six cases proven with computerized tomography. Am J Sports Med. 1992;20(6):657–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Van Meensel AS, Peers K. Navicular stress fracture in high-performing twin brothers: a case report. Acta Orthop Belg. 2010;76(3):407–12.PubMedGoogle Scholar
  22. 22.
    Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.CrossRefPubMedGoogle Scholar
  23. 23.•
    Gorter EA, Hamdy NA, Appelman-Dijkstra NM, Schipper IB. The role of vitamin D in human fracture healing: a systematic review of the literature. Bone. 2014;64:288–97. Systematic review of in vitro and in vivo studies on Vitamin D and its effect on fracture healing.CrossRefPubMedGoogle Scholar
  24. 24.
    Michelson JD, Charlson MD. Vitamin D status in an elective orthopedic surgical population. Foot Ankle Int. 2016;37(2):186–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Angeline ME, Gee AO, Shindle M, Warren RF, Rodeo SA. The effects of vitamin D deficiency in athletes. Am J Sports Med. 2013;41(2):461–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Bogunovic L, Kim AD, Beamer BS, Nguyen J, Lane JM. Hypovitaminosis D in patients scheduled to undergo orthopaedic surgery: a single-center analysis. J Bone Joint Surg Am. 2010;92(13):2300–4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sprague S, Petrisor B, Scott T, Devji T, Phillips M, Spurr H, et al. What is the role of vitamin D supplementation in acute fracture patients? A systematic review and meta-analysis of the prevalence of hypovitaminosis D and supplementation efficacy. J Orthop Trauma. 2016;30(2):53–63.CrossRefPubMedGoogle Scholar
  28. 28.•
    Smith JT, Halim K, Palms DA, Okike K, Bluman EM, Chiodo CP. Prevalence of vitamin D deficiency in patients with foot and ankle injuries. Foot Ankle Int. 2014;35(1):8–13. Prospective case control study showing greater risk of Vitamin D insufficiency in patients with low energy lower extremity fractures.CrossRefPubMedGoogle Scholar
  29. 29.
    Shimasaki Y, Nagao M, Miyamori T, Aoba Y, Fukushi N, Saita Y, et al. Evaluating the risk of a fifth metatarsal stress fracture by measuring the serum 25-hydroxyvitamin D levels. Foot Ankle Int. 2016;37(3):307–11.CrossRefPubMedGoogle Scholar
  30. 30.
    Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8(6):344–53.CrossRefPubMedGoogle Scholar
  31. 31.
    Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg : Off Publ Am College Foot Ankle Surg. 2000;39(2):96–103.CrossRefGoogle Scholar
  32. 32.
    Burne SG, Mahoney CM, Forster BB, Koehle MS, Taunton JE, Khan KM. Tarsal navicular stress injury: long-term outcome and clinicoradiological correlation using both computed tomography and magnetic resonance imaging. Am J Sports Med. 2005;33(12):1875–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Pavlov H, Torg JS, Freiberger RH. Tarsal navicular stress fractures: radiographic evaluation. Radiology. 1983;148(3):641–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Beck BR, Matheson GO, Bergman G, Norling T, Fredericson M, Hoffman AR, et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36(3):545–53.CrossRefPubMedGoogle Scholar
  35. 35.
    Graff J, Richter KD, Pastor J. Effect of high-energy shock waves on bony tissue. Urolithiasis. 1989:997–8.Google Scholar
  36. 36.
    Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop. 1991;15(3):181–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res. 2001;387:90–4.CrossRefGoogle Scholar
  38. 38.
    Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am. 2009;91(11):2589–97.CrossRefPubMedGoogle Scholar
  39. 39.
    Rompe JD, Rosendahl T, Schollner C, Theis C. High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res. 2001;387:102–11.CrossRefGoogle Scholar
  40. 40.
    Xu ZH, Jiang Q, Chen DY, Xiong J, Shi DQ, Yuan T, et al. Extracorporeal shock wave treatment in nonunions of long bone fractures. Int Orthop. 2009;33(3):789–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Taki M, Iwata O, Shiono M, Kimura M, Takagishi K. Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am J Sports Med. 2007;35(7):1188–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang CJ, Huang HY, Chen HH, Pai CH, Yang KD. Effect of shock wave therapy on acute fractures of the tibia: a study in a dog model. Clin Orthop Relat Res. 2001;387:112–8.CrossRefGoogle Scholar
  43. 43.
    Moretti B, Notarnicola A, Garofalo R, Moretti L, Patella S, Marlinghaus E, et al. Shock waves in the treatment of stress fractures. Ultrasound Med Biol. 2009;35(6):1042–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Fu L, Tang T, Miao Y, Hao Y, Dai K. Effect of 1,25-dihydroxy vitamin D3 on fracture healing and bone remodeling in ovariectomized rat femora. Bone. 2009;44(5):893–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Mineral Res : Off J Am Soc Bone Mineral Res. 2008;23(5):741–9.CrossRefGoogle Scholar
  46. 46.
    Alkhiary YM, Gerstenfeld LC, Krall E, Westmore M, Sato M, Mitlak BH, et al. Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am. 2005;87(4):731–41.PubMedGoogle Scholar
  47. 47.
    Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Mineral Res : Off J Am Soc Bone Mineral Res. 2010;25(2):404–14.CrossRefGoogle Scholar
  48. 48.•
    Almirol EA, LGao LY, Khurana B, Hurwitz S, Bluman EM, Chiodo CP, et al. Short-term effects of teriparatide versus placebo on bone biomarkers, structure, and fracture healign in women with lower-extremity stress fractures: a pilot study. J Clin Transl Endocrinol. 2016;5:7–14. Randomized controlled trial showing benefit of teriparatide administration for lower extremity stress fractures.CrossRefGoogle Scholar
  49. 49.
    Tashjian Jr AH, Gagel RF. Teriparatide [human PTH(1-34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Mineral Res : Off J Am Soc Bone Mineral Res. 2006;21(3):354–65.CrossRefGoogle Scholar
  50. 50.
    Andrews EB, Gilsenan AW, Midkiff K, Sherrill B, Wu Y, Mann BH, et al. The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Mineral Res : Off J Am Soc Bone Mineral Res. 2012;27(12):2429–37.CrossRefGoogle Scholar
  51. 51.
    Adams SB, Lewis Jr JS, Gupta AK, Parekh SG, Miller SD, Schon LC. Cannulated screw delivery of bone marrow aspirate concentrate to a stress fracture nonunion: technique tip. Foot Ankle Int. 2013;34(5):740–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Gianakos A, Ni A, Zambrana L, Kennedy JG, Lane JM. Bone marrow aspirate concentrate in animal long bone healing: an analysis of basic science evidence. J Orthop Trauma. 2016;30(1):1–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Hsu AR, Lee S. Evaluation of tarsal navicular stress fracture fixation using intraoperative O-arm computed tomography. Foot Ankle Specialist. 2014;7(6):515–21.CrossRefPubMedGoogle Scholar
  54. 54.
    Saxena A, Fullem B. Navicular stress fractures: a prospective study on athletes. Foot Ankle Int. 2006;27(11):917–21.CrossRefPubMedGoogle Scholar
  55. 55.
    Varley I, Greeves JP, Sale C, Friedman E, Moran DS, Yanovich R, et al. Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury. Purinergic Signal. 2016;12(1):103–13.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Rachel J. Shakked
    • 1
  • Emily E. Walters
    • 2
  • Martin J. O’Malley
    • 3
  1. 1.Rothman InstituteBensalemUSA
  2. 2.University of Texas McGovern Medical SchoolHoustonUSA
  3. 3.Hospital for Special SurgeryNew YorkUSA

Personalised recommendations