Skip to main content

Advertisement

Log in

Time to Make a Change: Assessing LDL-C Accurately in the Era of Modern Pharmacotherapeutics and Precision Medicine

  • Lipids (E. Michos, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The Friedewald equation for estimation of low-density lipoprotein cholesterol (LDL-C) was published in 1972 as an alternative to direct assessment by preparative ultracentrifugation. In this equation, very low-density lipoprotein is estimated by dividing triglycerides by a fixed factor (5 in mg/dL or 2.2 in mmol/L) and subtracting this term from non-high-density lipoprotein cholesterol (non-HDL-C). This method was derived in fasting samples from a small cohort of patients with primarily genetic dyslipidemias followed at the NIH. The method served well as the global standard for LDL-C estimation for decades, but is not well suited to modern clinical practice because it tends to underestimate LDL-C at low LDL-C and high triglyceride levels. The concern is that underestimation could lead to undertreatment in high-risk patients.

Recent Findings

Derived from big data and now validated around the world, a novel LDL-C equation created at Johns Hopkins replaces the fixed factor seen in the classic equation with a patient-specific variable based on triglyceride and non-HDL-C levels.

Summary

Given its superior accuracy in fasting and non-fasting populations alike, the novel equation is now the preferred method for LDL-C estimation and is being incorporated by leading clinical laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LDL-C:

Low-density lipoprotein cholesterol

VLDL-C:

Very low-density lipoprotein cholesterol

IDL-C:

Intermediate-density lipoprotein cholesterol

HDL-C:

High-density lipoprotein cholesterol

Non-HDL-C:

Non-high-density lipoprotein cholesterol

PCSK9:

Proprotein convertase subtilisin/kexin type 9

TG:

Triglycerides

TC:

Total cholesterol

NCEP:

National Cholesterol Education Program

ASCVD:

10-year atherosclerotic cardiovascular disease

ACC:

American College of Cardiology

CTT:

Cholesterol Treatment Trialists

IMPROVE-IT:

Improved Reduction of Outcomes: Vytorin Efficacy International Trial

FOURIER:

Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502. https://doi.org/10.1016/0002-9149(88)90248-2.

    Article  CAS  Google Scholar 

  2. Martin SS, Blaha MJ, Elshazly MB, Brinton EA, Toth PP, McEvoy JW, et al. Friedewald-estimated versus directly measured low-density lipoprotein cholesterol and treatment implications. J Am Coll Cardiol. 2013;62(8):732–9. https://doi.org/10.1016/j.jacc.2013.01.079.

    Article  CAS  PubMed  Google Scholar 

  3. Berry PH, Macdonald JS, Alberts AW, et al. Brain and optic system pathology in hypocholesterolemic dogs treated with a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Am J Pathol. 1988;132(3):427–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Neaton JD, Blackburn H, Jacobs D, Kuller L, Lee DJ, Sherwin R, et al. Serum cholesterol level and mortality findings for men screened in the multiple risk factor intervention trial. Multiple Risk Factor Intervention Trial Research Group. Arch Intern Med. 1992;152(7):1490–500. https://doi.org/10.1001/archinte.152.7.1490.

    Article  CAS  PubMed  Google Scholar 

  5. Wiviott SD, Cannon CP, Morrow DA, Ray KK, Pfeffer MA, Braunwald E, et al. Can low-density lipoprotein be too low? The safety and efficacy of achieving very low low-density lipoprotein with intensive statin therapy: a PROVE IT-TIMI 22 substudy. J Am Coll Cardiol. 2005;46(8):1411–6. https://doi.org/10.1016/j.jacc.2005.04.064.

    Article  CAS  PubMed  Google Scholar 

  6. Scharnagl H, Nauck M, Wieland H, Marz W. The Friedewald formula underestimates LDL cholesterol at low concentrations. Clin Chem Lab Med. 2001;39:426–31. https://doi.org/10.1515/cclm.2001.068.

    Article  CAS  PubMed  Google Scholar 

  7. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017 May 4;376(18):1713–22. https://doi.org/10.1056/nejmoa1615664.

    Article  CAS  PubMed  Google Scholar 

  8. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults. J Am Coll Cardiol. 2014;63(25):2889–934. https://doi.org/10.1016/j.jacc.2013.11.002.

    Article  PubMed  Google Scholar 

  9. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99. https://doi.org/10.1056/nejmoa1501031.

    Article  CAS  PubMed  Google Scholar 

  10. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78. https://doi.org/10.1016/s0140-6736(05)67394-1.

    Article  CAS  PubMed  Google Scholar 

  11. Martin SS, Blumenthal RS, Miller M. LDL cholesterol: the lower the better. Med Clin North Am. 2012;96(1):13–26. https://doi.org/10.1016/j.mcna.2012.01.009.

    Article  CAS  PubMed  Google Scholar 

  12. Sabatine MS, Wiviott SD, Im K, Murphy SA, Giugliano RP. Efficacy and safety of further lowering of low-density lipoprotein cholesterol in patients starting with very low levels: a meta-analysis. JAMA Cardiol. 2018; https://doi.org/10.1001/jamacardio.2018.2258.

    Article  PubMed  Google Scholar 

  13. Zulewski H, Ninnis R, Miserez AR, Baumstark MW, Keller U. VLDL and IDL apolipoprotein B-100 kinetics in familial hypercholesterolemia due to impaired LDL receptor function or to defective apolipoprotein B-100. J Lipid Res. 1998;39(2):380–7. https://doi.org/10.1016/0021-9150(95)96509-q.

    Article  CAS  PubMed  Google Scholar 

  14. Brown WV, Levy RI, Fredrickson DS. Studies of the proteins in human plasma very low density lipoproteins. J Biol Chem. 1969;244(20):5687–94.

    CAS  PubMed  Google Scholar 

  15. Gibbons GF, Islam K, Pease RJ. Mobilisation of triacylglycerol stores. Biochim Biophys Acta. 2000;1483(1):37–57. https://doi.org/10.1016/s1388-1981(99)00182-1.

    Article  CAS  PubMed  Google Scholar 

  16. Olefsky J, Reaven GM, Farquhar JW. Effects of weight reduction on obesity. Studies of lipid and carbohydrate metabolism in normal and hyperlipoproteinemic subjects. J Clin Invest. 1974;53(1):64–76. https://doi.org/10.1172/jci107560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kissebah AH, Alfarsi S, Adams PW. Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia. Metab Clin Exp. 1981;30(9):856–68. https://doi.org/10.1016/0026-0495(81)90064-0.

    Article  CAS  PubMed  Google Scholar 

  18. Vergès BL. Dyslipidaemia in diabetes mellitus. Review of the main lipoprotein abnormalities and their consequences on the development of atherogenesis. Diabetes Metab. 1999;25(Suppl 3):32–40.

    PubMed  Google Scholar 

  19. Quispe R, Hendrani A, Elshazly MB, Michos ED, McEvoy JW, Blaha MJ, et al. Accuracy of low-density lipoprotein cholesterol estimation at very low levels. BMC Med. 2017;15(1):83. https://doi.org/10.1186/s12916-017-0852-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37:2999–3058. https://doi.org/10.1093/eurheartj/ehw272.

    Article  PubMed  Google Scholar 

  21. Anderson TJ, Gregoire J, Pearson GJ, et al. 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82. https://doi.org/10.1016/j.cjca.2016.07.510.

    Article  PubMed  Google Scholar 

  22. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1--full report. J Clin Lipidol. 2015;9:129–69. https://doi.org/10.1016/j.jacl.2015.02.003.

    Article  PubMed  Google Scholar 

  23. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97. https://doi.org/10.1056/NEJMoa1410489.

    Article  CAS  PubMed  Google Scholar 

  24. Murphy SA, Cannon CP, Blazing MA, Giugliano RP, White JA, Lokhnygina Y, et al. Reduction in total cardiovascular events with ezetimibe/simvastatin post-acute coronary syndrome the IMPROVE-IT trial. J Am Coll Cardiol. 2016;67(4):353–61. https://doi.org/10.1016/j.jacc.2015.10.077.

    Article  CAS  PubMed  Google Scholar 

  25. Nordestgaard BG, Langsted A, Mora S, Kolovou G, Baum H, Bruckert E, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37(25):1944–58. https://doi.org/10.1373/clinchem.2016.258897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118:2047–56. https://doi.org/10.1161/circulationaha.108.804146.

    Article  CAS  PubMed  Google Scholar 

  27. Ruge T, Svensson M, Eriksson JW, Olivecrona G. Tissue-specific regulation of lipoprotein lipase in humans: effects of fasting. Eur J Clin Investig. 2005;35:194–200. https://doi.org/10.1111/j.1365-2362.2005.01470.x.

    Article  CAS  Google Scholar 

  28. Ladu MJ, Kapsas H, Palmer WK. Regulation of lipoprotein lipase in adipose and muscle tissues during fasting. Am J Phys. 1991;260:R953–9. https://doi.org/10.1152/ajpregu.1991.260.5.r953.

    Article  CAS  Google Scholar 

  29. Mora S. Nonfasting for routine lipid testing: from evidence to action. JAMA Intern Med. 2016;176(7):1005–6. https://doi.org/10.1001/jamainternmed.2016.1979.

    Article  PubMed  Google Scholar 

  30. Mora S, Rifai N, Buring JE, Ridker PM. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation. 2008;118:993–1001. https://doi.org/10.1161/circulationaha.108.777334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ridker PM, Rifai N, Cook NR, Bradwin G, Buring JE. Non-HDL cholesterol, apolipoproteins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA. 2005;294:326–33. https://doi.org/10.1001/jama.294.3.326.

    Article  CAS  PubMed  Google Scholar 

  32. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298:299–308. https://doi.org/10.1001/jama.298.3.299.

    Article  CAS  PubMed  Google Scholar 

  33. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298:309–16. https://doi.org/10.1001/jama.298.3.309.

    Article  CAS  PubMed  Google Scholar 

  34. van Deventer HE, Miller WG, Myers GL, Sakurabayashi I, Bachmann LM, Caudill SP, et al. Non-HDL cholesterol shows improved accuracy for cardiovascular risk score classification compared to direct or calculated LDL cholesterol in a dyslipidemic population. Clin Chem. 2011;57:490–501. https://doi.org/10.1373/clinchem.2010.154773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nordestgaard BG. A test in context: lipid profile, fasting versus nonfasting. J Am Coll Cardiol. 2017;70:1637–46. https://doi.org/10.1016/j.jacc.2017.08.006.

    Article  PubMed  Google Scholar 

  36. Driver SL, Martin SS, Gluckman TJ, Clary JM, Blumenthal RS, Stone NJ. Fasting or nonfasting lipid measurements: it depends on the question. J Am Coll Cardiol. 2016;67:1227–34. https://doi.org/10.1016/j.jacc.2015.12.047.

    Article  CAS  PubMed  Google Scholar 

  37. Sathiyakumar V, Park J, Golozar A, Lazo M, Quispe R, Guallar E, et al. Fasting versus nonfasting and low-density lipoprotein cholesterol accuracy. Circulation. 2018;137:10–9. https://doi.org/10.1161/circulationaha.117.030677.

    Article  CAS  PubMed  Google Scholar 

  38. Winocour PH, Ishola M, Durrington PN. Validation of the Friedewald formula for the measurement of low density lipoprotein cholesterol in insulin-dependent diabetes mellitus. Clin Chim Acta. 1989;179(1):79–83. https://doi.org/10.1016/0009-8981(89)90025-9.

    Article  CAS  PubMed  Google Scholar 

  39. Warnick GR, Knopp RH, Fitzpatrick V, Branson L. Estimating low-density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints. Clin Chem. 1990;36(1):15–9.

    CAS  PubMed  Google Scholar 

  40. Tremblay AJ, Morrissette H, Gagné JM, Bergeron J, Gagné C, Couture P. Validation of the Friedewald formula for the determination of low-density lipoprotein cholesterol compared with beta-quantification in a large population. Clin Biochem. 2004;37(9):785–90. https://doi.org/10.1016/j.clinbiochem.2004.03.008.

    Article  CAS  PubMed  Google Scholar 

  41. Knopfholz J, Disserol CC, Pierin AJ, et al. Validation of the Friedewald formula in patients with metabolic syndrome. Cholesterol. 2014;2014:261878. https://doi.org/10.1155/2014/261878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DeLong DM, DeLong ER, Wood PD, Lippel K, Rifkind BM. A comparison of methods for the estimation of plasma low- and very low-density lipoprotein cholesterol: the lipid research clinics prevalence study. JAMA. 1986;256(17):2372–7. https://doi.org/10.1001/jama.1986.03380170088024.

    Article  CAS  PubMed  Google Scholar 

  43. Rim JH, Lee YH, Lee MH, Kim HY, Choi J, Lee BW, et al. Comparison and validation of 10 equations including a novel method for estimation of LDL-cholesterol in a 168,212 Asian population. Medicine (Baltimore). 2016;95(14):e3230. https://doi.org/10.1097/md.0000000000003230.

    Article  CAS  Google Scholar 

  44. Rao A, Parker AH, El-sheroni NA, Babelly MM. Calculation of low-density lipoprotein cholesterol with use of triglyceride/cholesterol ratios in lipoproteins compared with other calculation methods. Clin Chem. 1988;34(12):2532–4.

    CAS  PubMed  Google Scholar 

  45. McNamara JR, Cohn JS, Wilson PWF, Schaefer E. Calculated values for low-density lipoprotein cholesterol in the assessment of lipid abnormalities and coronary disease risk. Clin Chem. 1990;36:36–42.

    CAS  PubMed  Google Scholar 

  46. Hattori Y, Suzuki M, Tsushima M, Yoshida M, Tokunaga Y, Wang Y, et al. Development of approximate formula for LDL-chol, LDL-apo B and LDL-chol/LDL-apo B as indices of hyperapobetalipoproteinemia and small dense LDL. Atherosclerosis. 1998;138(2):289–99. https://doi.org/10.1016/s0021-9150(98)00034-3.

    Article  CAS  PubMed  Google Scholar 

  47. Martins J, Olorunju SA, Murray LM, Pillay TS. Comparison of equations for the calculation of LDL-cholesterol in hospitalized patients. Clin Chim Acta. 2015;444:137–42. https://doi.org/10.1016/j.cca.2015.01.037.

    Article  CAS  PubMed  Google Scholar 

  48. Anandaraja S, Narang R, Godeswar R, Laksmy R, Talwar KK. Low-density lipoprotein cholesterol estimation by a new formula in Indian population. Int J Cardiol. 2005;102(1):117–20. https://doi.org/10.1016/j.ijcard.2004.05.009.

    Article  CAS  PubMed  Google Scholar 

  49. Krishnaveni P, Gowda VM. Assessing the validity of Friedewald’s formula and Anandraja’s formula for serum LDL-cholesterol calculation. J Clin Diagn Res. 2015;9(12):BC01–4. https://doi.org/10.7860/jcdr/2015/16850.6870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Teerakanchana T, Puavilai W, Suriyaprom K, Tungtrongchitr R. Comparative study of LDL-cholesterol levels in Thai patients by the direct method and using the Friedewald formula. Southeast Asian J Trop Med Public Health. 2007;38(3):519–27.

    CAS  PubMed  Google Scholar 

  51. Osegbe I, Ugonabo M, Chukwuka C, Meka I, Nwosu N. Comparison of calculated versus directly-measured low-density lipoprotein-cholesterol: an evaluation of ten formulas for an HIV-positive population in sub-Saharan Africa. J Lab Physicians. 2017;9(2):111–5. https://doi.org/10.4103/0974-2727.199632.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ahmadi SA, Boroumand MA, Gohari-moghaddam K, Tajik P, Dibaj SM. The impact of low serum triglyceride on LDL-cholesterol estimation. Arch Iran Med. 2008;11(3):318–21.

    CAS  PubMed  Google Scholar 

  53. Chen Y, Zhang X, Pan B, Jin X, Yao H, Chen B, et al. A modified formula for calculating low-density lipoprotein cholesterol values. Lipids Health Dis. 2010;9:52. https://doi.org/10.1186/1476-511x-9-52.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vujovic A, Kotur-stevuljevic J, Spasic S, et al. Evaluation of different formulas for LDL-C calculation. Lipids Health Dis. 2010;9:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choi H, Shim JS, Lee MH, Yoon YM, Choi DP, Kim HC. Comparison of formulas for calculating low-density lipoprotein cholesterol in general population and high-risk patients with cardiovascular disease. Korean Circ J. 2016;46(5):688–98. https://doi.org/10.4070/kcj.2016.46.5.688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wadhwa N, Krishnaswamy R. Comparison of LDL-cholesterol estimate using various formulae with directly measured LDL-cholesterol in Indian population. J Clin Diagn Res. 2016;10(12):BC11–3. https://doi.org/10.7860/jcdr/2016/22272.9018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. De cordova CM, De cordova MM. A new accurate, simple formula for LDL-cholesterol estimation based on directly measured blood lipids from a large cohort. Ann Clin Biochem. 2013;50(Pt 1):13–9. https://doi.org/10.1258/acb.2012.011259.

    Article  CAS  PubMed  Google Scholar 

  58. •• Martin SS, Blaha MJ, Elshazly MB, et al. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA. 2013;310:2061–8. https://doi.org/10.1001/jama.2013.280532. Initial study to propose the Martin LDL-C equation, which is currently being incorporated globally as the new standard of LDL-C estimation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chaen H, Kinchiku S, Miyata M, Kajiya S, Uenomachi H, Yuasa T, et al. Validity of a novel method for estimation of low-density lipoprotein cholesterol levels in diabetic patients. J Atheroscler Thromb. 2016;23(12):1355–64. https://doi.org/10.5551/jat.35972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee J, Jang S, Son H. Validation of the Martin method for estimating low-density lipoprotein cholesterol levels in Korean adults: findings from the Korea National Health and Nutrition Examination Survey, 2009-2011. PLoS One. 2016;11(1):e0148147. https://doi.org/10.1371/journal.pone.0148147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mehta R, Reyes-rodríguez E, Yaxmehen Bello-chavolla O, et al. Performance of LDL-C calculated with Martin's formula compared to the Friedewald equation in familial combined hyperlipidemia. Atherosclerosis. 2018; https://doi.org/10.1016/j.atherosclerosis.2018.06.868.

    Article  CAS  PubMed  Google Scholar 

  62. Kang M, Kim J, Lee SY, Kim K, Yoon J, Ki H. Martin’s equation as the most suitable method for estimation of low-density lipoprotein cholesterol levels in Korean adults. Korean J Fam Med. 2017;38(5):263–9. https://doi.org/10.4082/kjfm.2017.38.5.263.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bachorik P. Measurement of low-density-lipoprotein cholesterol. In: Rifai N, Warnick G, Dominiczak M, editors. Handbook of lipoprotein testing, 2nd ed. Washington D.C: AACC Press; 2000. p. 245.

  64. Miller WG, Myers GL, Sakurabayashi I, Bachmann LM, Caudill SP, Dziekonski A, et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin Chem. 2010;56:977–86. https://doi.org/10.1373/clinchem.2009.142810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Whelton SP, Meeusen JW, Donatp LJ, et al. Evaluating the atherogenic burden of individuals with a Friedewald-estimated low-density lipoprotein cholesterol < 70 mg/dL compared with a novel low-density lipoprotein estimation method. J Clin Lipidol. 2017;11(4):1065–72. https://doi.org/10.1016/j.jacl.2017.05.005.

    Article  PubMed  Google Scholar 

  66. Martin S, Giugliano R, Murphy S, et al. Martin/Hopkins estimation, Friedewald and beta-quantification of LDL-C in patients in FOURIER. J Clin Lipidol. 2018;12(2):565–6. https://doi.org/10.1016/j.jacl.2018.03.071.

    Article  Google Scholar 

  67. Sathiyakumar V, Park J, Quispe R, Elshazly MB, Michos ED, Banach M, et al. Impact of novel LDL-C assessment on the utility of secondary non-HDL-C and ApoB targets in selected worldwide dyslipidemia guidelines. Circulation. 2018;138:244–54. https://doi.org/10.1161/circulationaha.117.032463.

    Article  CAS  PubMed  Google Scholar 

  68. Meeusen JW, Lueke AJ, Jaffe AS, Saenger AK. Validation of a proposed novel equation for estimating LDL cholesterol. Clin Chem. 2014;60(12):1519–23. https://doi.org/10.1373/clinchem.2014.227710.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent A. Pallazola.

Ethics declarations

Conflict of Interest

SSM and SRJ have patent applications pending on the novel equation for LDL-C estimation. In addition, SSM reports personal fees for serving on scientific advisory boards for Amgen, Sanofi/Regeneron, Quest Diagnostics, and Akcea Therapeutics, as well as grants/research support from the PJ Schafer Cardiovascular Research Fund, the David and June Trone Family Foundation, American Heart Association, Aetna Foundation, Maryland Innovation Initiative, Nokia, Google, Apple, and iHealth.

Authors VP, RQ, ME, RV, and VS have no conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of Topical Collection on Lipids

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallazola, V.A., Quispe, R., Elshazly, M.B. et al. Time to Make a Change: Assessing LDL-C Accurately in the Era of Modern Pharmacotherapeutics and Precision Medicine. Curr Cardiovasc Risk Rep 12, 26 (2018). https://doi.org/10.1007/s12170-018-0590-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-018-0590-9

Keywords

Navigation