Pediatric Hypertension: Impact on the Heart, Brain, Kidney, and Retina

  • Jovanka Vasilevska-Ristovska
  • Shawn Z. Hudes
  • Kirtiga Naguleswaran
  • Valerie Langlois
  • Mina Matsuda-Abedini
  • Rulan S. Parekh
Part of the following topical collections:
  1. Topical Collection on Pediatrics


Purpose of Review

Pediatric hypertension is increasing in incidence with concomitant increases in childhood obesity. Target organ damage from primary or secondary pediatric hypertension is a growing concern, as the pathogenesis of vascular disease, typically observed later in life, may begin at a young age. While hypertensive complications are described extensively in adults, much less is known about end organ damage from elevated blood pressure in children and adolescents.

Recent Findings

This review highlights the recent advances describing the target organ damage in the macro- and microvasculature resulting from hypertension. Persistently elevated blood pressure in childhood is associated with vascular changes affecting the heart, brain, kidneys, and retina. Emerging research shows that elevated blood pressure in children has effect on neurocognitive function in specific domains such as executive functioning, attention, and memory. Microalbuminuria is an early marker of kidney disease and a sign of glomerular injury and endothelial dysfunction that increases the risk of kidney damage and is associated with future kidney and cardiovascular events. Screening with ambulatory blood pressure monitoring to improve blood pressure control and echocardiogram may aid in early prevention of end organ damage.


In this review, we summarize and critically evaluate recent findings, describe ongoing studies, and address future research questions. Implications for diagnosis, prognosis, and need for better control of hypertension are also discussed.


Pediatric hypertension Essential hypertension Target organ damage End organ damage Blood pressure 


Compliance with Ethical Standards

Conflict of Interest

Jovanka Vasilevska-Ristovska, Shawn Hudes, Kirtiga Naguleswaran, Valerie Langlois, Mina Matsuda-Abedini, and Rulan Parekh declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Organization, W.H. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009. p. 10.Google Scholar
  2. 2.
    Muntner P, He J, Cutler JA, Wildman RP, Wheltan PK. Trends in blood pressure among chlidren and adolescents. JAMA. 2004;291(17):2107–13.CrossRefPubMedGoogle Scholar
  3. 3.
    Sundstrom J, Neovius M, Tynelius P, Rasmussen F. Association of blood pressure in late adolescence with subsequent mortality: cohort study of Swedish male conscripts. BMJ. 2011;342:d643.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    • Theodore RF, et al. Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension. 2015;66(6):1108–15. Elevated blood pressure trajectories are identifiable in childhood and can predict adult cardiovascular risk. PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117(25):3171–80.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Karpettas N, Nasothimiou E, Kollias A, Vazeou A, Stergiou GS. Ambulatory and home blood pressure monitoring in children and adolescents: diagnosis of hypertension and assessment of target-organ damage. Hypertens Res. 2013;36:285–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Natl High Blood Pressure Educ, P. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2):555–76.CrossRefGoogle Scholar
  8. 8.
    Nilsson PM. The J-shaped curve in secondary prevention. Hypertension. 2012;59:8–9.CrossRefPubMedGoogle Scholar
  9. 9.
    • Flynn JT, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3) This clinical practice guideline is an update to the 2004 “Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents.” The guideline focused on the diagnosis and initial management of elevated blood pressure in ambulatory setting. Google Scholar
  10. 10.
    Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens (Greenwich). 2011;13(5):332–42.CrossRefGoogle Scholar
  11. 11.
    Sorof JM, Alexandrov AV, Cardwell G, Portman RJ. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics. 2003;111(1):61–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Hanevold C, Waller J, Daniels S, Portman R, Sorof J, International Pediatric Hypertension Association. The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics. 2004;113(2):328–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Pruette CS, Fivush BA, Flynn JT, Brady TM. Effects of obesity and race on left ventricular geometry in hypertensive children. Pediatr Nephrol. 2013;28(10):2015–22.CrossRefPubMedGoogle Scholar
  14. 14.
    Ramaswamy P, Chikkabyrappa S, Donda K, Osmolovsky M, Rojas M, Rafii D. Relationship of ambulatory blood pressure and body mass index to left ventricular mass index in pediatric patients with casual hypertension. J Am Soc Hypertens. 2016;10(2):108–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Dhuper S, Abdullah RA, Weichbrod L, Mahdi E, Cohen HW. Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity (Silver Spring). 2011;19(1):128–33.CrossRefGoogle Scholar
  16. 16.
    Gupta-Malhotra M, Hashmi SS, Poffenbarger T, McNiece-Redwine K. Left ventricular hypertrophy phenotype in childhood-onset essential hypertension. J Clin Hypertens (Greenwich). 2016;18(5):449–55.CrossRefGoogle Scholar
  17. 17.
    Gidding SS, Palermo RA, DeLoach SS, Keith SW, Falkner B. Associations of cardiac structure with obesity, blood pressure, inflammation, and insulin resistance in African-American adolescents. Pediatr Cardiol. 2014;35(2):307–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Barnes VA, Kapuku GK, Treiber FA. Impact of transcendental meditation on left ventricular mass in african american adolescents. Evid Based Complement Alternat Med. 2012;2012:923153.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kupferman JC, Aronson Friedman L, Cox C, Flynn J, Furth S, Warady B, et al. BP control and left ventricular hypertrophy regression in children with CKD. J Am Soc Nephrol. 2014;25(1):167–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Matteucci MC, Chinali M, Rinelli G, Wuhl E, Zurowska A, Charbit M, et al. Change in cardiac geometry and function in CKD children during strict BP control: a randomized study. Clin J Am Soc Nephrol. 2013;8(2):203–10.CrossRefPubMedGoogle Scholar
  21. 21.
    Kupferman JC, Paterno K, Mahgerefteh J, Pagala M, Golden M, Lytrivi ID, et al. Improvement of left ventricular mass with antihypertensive therapy in children with hypertension. Pediatr Nephrol. 2010;25(8):1513–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Litwin M, Niemirska A, Śladowska-Kozlowska J, Wierzbicka A, Janas R, Wawer ZT, et al. Regression of target organ damage in children and adolescents with primary hypertension. Pediatr Nephrol. 2010;25(12):2489–99.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sladowska-Kozlowska J, et al. Change in left ventricular geometry during antihypertensive treatment in children with primary hypertension. Pediatr Nephrol. 2011;26(12):2201–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Drozdz D, Kawecka-Jaszcz K. Cardiovascular changes during chronic hypertensive states. Pediatr Nephrol. 2014;29(9):1507–16.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee H, Kong YH, Kim KH, Huh J, Kang IS, Song J. Left ventricular hypertrophy and diastolic function in children and adolescents with essential hypertension. Clin Hypertens. 2015;21:21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Richey PA, DiSessa TG, Somes GW, Alpert BS, Jones DP. Left ventricular geometry in children and adolescents with primary hypertension. Am J Hypertens. 2010;23(1):24–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Meng L, Hou D, Zhao X, Hu Y, Liang Y, Liu J, et al. Cardiovascular target organ damage could have been detected in sustained pediatric hypertension. Blood Press. 2015;24(5):284–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Civilibal M, Duru NS, Elevli M. Subclinical atherosclerosis and ambulatory blood pressure in children with metabolic syndrome. Pediatr Nephrol. 2014;29(11):2197–204.CrossRefPubMedGoogle Scholar
  29. 29.
    Baroncini LA, Sylvestre Lde C, Pecoits Filho R. Assessment of intima-media thickness in healthy children aged 1 to 15 years. Arq Bras Cardiol. 2016;106(4):327–32.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Weberruss H, et al. Increased intima-media thickness is not associated with stiffer arteries in children. Atherosclerosis. 2015;242(1):48–55.CrossRefPubMedGoogle Scholar
  31. 31.
    Breton CV, Wang X, Mack WJ, Berhane K, Lopez M, Islam TS, et al. Carotid artery intima-media thickness in college students: race/ethnicity matters. Atherosclerosis. 2011;217(2):441–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ceponiene I, Klumbiene J, Tamuleviciute-Prasciene E, Motiejunaite J, Sakyte E, Ceponis J, et al. Associations between risk factors in childhood (12–13 years) and adulthood (48–49 years) and subclinical atherosclerosis: the Kaunas Cardiovascular Risk Cohort study. BMC Cardiovasc Disord. 2015;15:89.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Totaro S, Khoury PR, Kimball TR, Dolan LM, Urbina EM. Arterial stiffness is increased in young normotensive subjects with high central blood pressure. J Am Soc Hypertens. 2015;9(4):285–92.CrossRefPubMedGoogle Scholar
  34. 34.
    Cai TY, Sullivan TR, Ayer JG, Harmer JA, Leeder SR, Toelle BG, et al. Childhood Asthma Prevention Study Team, Carotid extramedial thickness is associated with local arterial stiffness in children. J Hypertens. 2016;34(1):109–15.CrossRefPubMedGoogle Scholar
  35. 35.
    Batista MS, et al. Factors associated with arterial stiffness in children aged 9–10 years. Rev Saude Publica. 2015;49:1–8.CrossRefGoogle Scholar
  36. 36.
    Garcia-Espinosa V, et al. Children and adolescent obesity associates with pressure-dependent and age-related increase in carotid and femoral arteries’ stiffness and not in brachial artery, indicative of nonintrinsic arterial wall alteration. Int J Vasc Med. 2016;2016:4916246.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kulsum-Mecci N, et al. Effects of obesity and hypertension on pulse wave velocity in children. J Clin Hypertens (Greenwich). 2016;19:221–226.Google Scholar
  38. 38.
    Mocnik M, Nikolic S, Varda NM. Arterial compliance measurement in overweight and hypertensive children. Indian J Pediatr. 2016;83(6):510–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Phillips AA, Chirico D, Coverdale NS, Fitzgibbon LK, Shoemaker JK, Wade TJ, et al. The association between arterial properties and blood pressure in children. Appl Physiol Nutr Metab. 2015;40(1):72–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Urbina EM, Gao Z, Khoury PR, Martin LJ, Dolan LM. Insulin resistance and arterial stiffness in healthy adolescents and young adults. Diabetologia. 2012;55(3):625–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Aatola H, Magnussen CG, Koivistoinen T, Hutri-Kähönen N, Juonala M, Viikari JS, et al. Simplified definitions of elevated pediatric blood pressure and high adult arterial stiffness. Pediatrics. 2013;132(1):e70–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Ferreira I, van de Laar RJ, Prins MH, Twisk JW, Stehouwer CD. Carotid stiffness in young adults: a life-course analysis of its early determinants: the Amsterdam Growth and Health Longitudinal Study. Hypertension. 2012;59(1):54–61.CrossRefPubMedGoogle Scholar
  43. 43.
    Monostori P, Baráth Á, Fazekas I, Hódi E, Máté A, Farkas I, et al. Microvascular reactivity in lean, overweight, and obese hypertensive adolescents. Eur J Pediatr. 2010;169(11):1369–74.CrossRefPubMedGoogle Scholar
  44. 44.
    Yilmazer MM, Tavli V, Carti ÖU, Mese T, Güven B, Aydın B, et al. Cardiovascular risk factors and noninvasive assessment of arterial structure and function in obese Turkish children. Eur J Pediatr. 2010;169(10):1241–8.CrossRefPubMedGoogle Scholar
  45. 45.
    B Głowińska-Olszewska JT, Łuczyński W, Konstantynowicz J, Bossowski A. Cardiovascular risk in nonobese hypertensive adolescents: a study based on plasma biomarkers and ultrasonographic assessment of early atherosclerosis. J Hum Hypertens. 2013;27(3):191–6.CrossRefGoogle Scholar
  46. 46.
    Lazdam M, Lewandowski AJ, Kylintireas I, Cunnington C, Diesch J, Francis J, et al. Impaired endothelial responses in apparently healthy young people associated with subclinical variation in blood pressure and cardiovascular phenotype. Am J Hypertens. 2012;25(1):46–53.CrossRefPubMedGoogle Scholar
  47. 47.
    Khalil A, Sareen R, Mallika V, Chowdhury V. Non-invasive evaluation of endothelial function, arterial mechanics and nitric oxide levels in children of hypertensive parents. Indian Heart J. 2008;60(1):34–8.PubMedGoogle Scholar
  48. 48.
    Cha SD, et al. The effects of hypertension on cognitive function in children and adolescents. Int J Pediatr. 2012;2012:891094.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lande MB, Gerson AC, Hooper SR, Cox C, Matheson M, Mendley SR, et al. Casual blood pressure and neurocognitive function in children with chronic kidney disease: a report of the children with chronic kidney disease cohort study. Clin J Am Soc Nephrol. 2011;6(8):1831–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lande MB, et al. Neurocognitive function in children with primary hypertension. J Pediatr. 2017;180:148–155.e1.CrossRefPubMedGoogle Scholar
  51. 51.
    Ostrovskaya MA, Rojas M, Kupferman JC, Lande MB, Paterno K, Brosgol Y, et al. Executive function and cerebrovascular reactivity in pediatric hypertension. J Child Neurol. 2015;30(5):543–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Lyngdoh T, Viswanathan B, Kobrosly R, van Wijngaarden E, Huber B, Davidson PW, et al. Blood pressure and cognitive function: a prospective analysis among adolescents in Seychelles. J Hypertens. 2013;31(6):1175–82.CrossRefPubMedGoogle Scholar
  53. 53.
    Grisaru S, et al. Ambulatory blood pressure monitoring in a cohort of children referred with suspected hypertension: characteristics of children with and without attention deficit hyperactivity disorder. Int J Hypertens. 2013;2013:4.CrossRefGoogle Scholar
  54. 54.
    Qorbani M, Kelishadi R, Taheri E, Motlagh M, Arzaghi S, Ardalan G, et al. Association between psychosocial distress with cardio metabolic risk factors and liver enzymes in a nationally-representative sample of Iranian children and adolescents: the CASPIAN-III study. J Diabetes Metab Disord. 2014;13:44.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Adams HR, Szilagyi PG, Gebhardt L, Lande MB. Learning and attention problems among children with pediatric primary hypertension. Pediatrics. 2010;126(6):e1425–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Berendes A, Meyer T, Hulpke-Wette M, Herrmann-Lingen C. Association of elevated blood pressure with low distress and good quality of life: results from the nationwide representative German Health Interview and Examination Survey for Children and Adolescents. Psychosom Med. 2013;75(4):422–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Wong LJ, Kupferman JC, Prohovnik I, Kirkham FJ, Goodman S, Paterno K, et al. Hypertension impairs vascular reactivity in the pediatric brain. Stroke. 2011;42(7):1834–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Kuciene R, Dulskiene V. Associations of short sleep duration with prehypertension and hypertension among Lithuanian children and adolescents: a cross-sectional study. BMC Public Health. 2014;14:255.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Guo X, Zheng L, Li Y, Yu S, Liu S, Zhou X, et al. Association between sleep duration and hypertension among Chinese children and adolescents. Clin Cardiol. 2011;34(12):774–81.CrossRefPubMedGoogle Scholar
  60. 60.
    Yano Y, Ning H, Allen N, Reis JP, Launer LJ, Liu K, et al. Long-term blood pressure variability throughout young adulthood and cognitive function in midlife: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Hypertension. 2014;64(5):983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Meyers KE, Sethna CB. Thinking under pressure. J Pediatr. 2017;180:7–10.CrossRefPubMedGoogle Scholar
  62. 62.
    Muldoon MF, Waldstein SR, Ryan CM, Jennings JR, Polefrone JM, Shapiro AP, et al. Effects of six anti-hypertensive medications on cognitive performance. J Hypertens. 2002;20(8):1643–52.CrossRefPubMedGoogle Scholar
  63. 63.
    Lande MB, Batisky DL, Kupferman JC, Samuels J, Hooper SR, Falkner B, et al. Neurocognitive function in children with primary hypertension after initiation of antihypertensive therapy. J Pediatr. 2018;195:85–94.e1.CrossRefPubMedGoogle Scholar
  64. 64.
    Palatini P, Mos L, Ballerini P, Mazzer A, Saladini F, Bortolazzi A, et al. Relationship between GFR and albuminuria in stage 1 hypertension. Clin J Am Soc Nephrol. 2013;8(1):59–66.CrossRefPubMedGoogle Scholar
  65. 65.
    Seeman T, Pohl M, Palyzova D, John U. Microalbuminuria in children with primary and white-coat hypertension. Pediatr Nephrol. 2012;27(3):461–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Blumczynski A, Sołtysiak J, Lipkowska K, Silska M, Poprawska A, Musielak A, et al. Hypertensive nephropathy in children—do we diagnose early enough? Blood Press. 2012;21(4):233–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Wu D, et al. Age- and gender-specific reference values for urine albumin/creatinine ratio in children of southwest China. Clin Chim Acta. 2014;431:239–43.CrossRefPubMedGoogle Scholar
  68. 68.
    Okpere AN, Anochie IC, Eke FU. Prevalence of microalbuminuria among secondary school children. Afr Health Sci. 2012;12(2):140–7.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Jones CA, Francis ME, Eberhardt MS, Chavers B, Coresh J, Engelgau M, et al. Microalbuminuria in the US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2002;39(3):445–59.CrossRefPubMedGoogle Scholar
  70. 70.
    K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis. 2005;45(4 Suppl 3):S1–153.Google Scholar
  71. 71.
    Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56.PubMedCentralGoogle Scholar
  72. 72.
    Harris KC, Benoit G, Dionne J, Feber J, Cloutier L, Zarnke KB, et al. Hypertension Canada’s 2016 Canadian Hypertension Education Program Guidelines for Blood Pressure Measurement, Diagnosis, and Assessment of Risk of Pediatric Hypertension. Can J Cardiol. 2016;32(5):589–97.CrossRefPubMedGoogle Scholar
  73. 73.
    Conkar S, Yılmaz E, Hacıkara Ş, Bozabalı S, Mir S. Is daytime systolic load an important risk factor for target organ damage in pediatric hypertension? J Clin Hypertens (Greenwich). 2015;17(10):760–6.CrossRefGoogle Scholar
  74. 74.
    Girisgen I, et al. Urinary markers of renal damage in hypertensive children diagnosed with ambulatory blood pressure monitoring. Turk J Pediatr. 2014;56(1):48–55.PubMedGoogle Scholar
  75. 75.
    Assadi F. Effect of microalbuminuria lowering on regression of left ventricular hypertrophy in children and adolescents with essential hypertension. Pediatr Cardiol. 2007;28(1):27–33.CrossRefPubMedGoogle Scholar
  76. 76.
    Shechtman DL, Falco LA. Hypertension: more than meets the eye. Rev Optom. 2007;144(9):101–12.Google Scholar
  77. 77.
    Li LJ, Lee YS, Wong TY, Cheung CYL. Can the retinal microvasculature offer clues to cardiovascular risk factors in early life? Acta Paediatr. 2013;102(10):941–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Williams KM, Shah AN, Morrison D, Sinha MD. Hypertensive retinopathy in severely hypertensive children: demographic, clinical, and ophthalmoscopic findings from a 30-year British cohort. J Pediatr Ophthalmol Strabismus. 2013;50(4):222–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Liccardo D, Mosca A, Petroni S, Valente P, Giordano U, Mico’ AGA, et al. The association between retinal microvascular changes, metabolic risk factors, and liver histology in pediatric patients with non-alcoholic fatty liver disease (NAFLD). J Gastroenterol. 2015;50(8):903–12.CrossRefPubMedGoogle Scholar
  80. 80.
    Foster BJ, Ali H, Mamber S, Polomeno RC, Mackie AS. Prevalence and severity of hypertensive retinopathy in children. Clin Pediatr. 2009;48(9):926–30.CrossRefGoogle Scholar
  81. 81.
    Owen CG, Rudnicka AR, Nightingale CM, Mullen R, Barman SA, Sattar N, et al. Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the Child Heart and Health Study in England (CHASE). Arterioscler Thromb Vasc Biol. 2011;31(8):1933–8.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Li LJ, Cheung CY, Liu Y, Chia A, Selvaraj P, Lin XY, et al. Influence of blood pressure on retinal vascular caliber in young children. Ophthalmology. 2011;118:1459–65.CrossRefPubMedGoogle Scholar
  83. 83.
    Gopinath B, Wang JJ, Kifley A, Tan AG, Wong TY, Mitchell P. Influence of blood pressure and body mass index on retinal vascular caliber in preschool-aged children. J Hum Hypertens. 2013;27:523–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Zheng Y, Huang W, Zhang J, He M. Phenotypic and genetic correlation of blood pressure and body mass index with retinal vascular caliber in children and adolescents: the Guangzhou twin eye study. Invest Ophthalmol Vis Sci. 2013;54(1):423–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Murgan I, Beyer S, Kotliar KE, Weber L, Bechtold-Dalla Pozza S, Dalla Pozza R, et al. Arterial and retinal vascular changes in hypertensive and prehypertensive adolescents. Am J Hypertens. 2013;26(3):400–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Tapp RJ, Hussain SM, Battista J, Hutri-Kähönen N, Lehtimäki T, Hughes AD, et al. Impact of blood pressure on retinal microvasculature architecture across the lifespan: the Young Finns Study. Microcirculation. 2015;22(2):146–55.CrossRefPubMedGoogle Scholar
  87. 87.
    Daniels SR, Lipman MJ, Burke MJ, Loggie JM. The prevalence of retinal vascular abnormalities in children and adolescents with essential hypertension. Am J Ophthalmol. 1991;111(2):205–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Shah V, Zlotcavitch L, Herro AM, Dubovy SR, Yehoshua Z, Lam BL. Bilateral papillopathy as a presenting sign of pheochromocytoma associated with von Hippel-Lindau disease. Clin Ophthalmol. 2014;8:623–8.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Yildirim A, et al. Diagnosis of malignant hypertension with ocular examination: a child case. Semin Ophthalmol. 2014;29(1):32–5.CrossRefPubMedGoogle Scholar
  90. 90.
    Kozaczuk S, Ben-Skowronek I. From arterial hypertension complications to von Hippel-Lindau syndrome diagnosis. Ital J Pediatr. 2015;41:56.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Chahal HS, et al. Hypertensive retinopathy in a child. Br J Ophthalmol. 2011;95(5):741. quiz 755–6CrossRefPubMedGoogle Scholar
  92. 92.
    Tibbetts MD, Wise R, Forbes B, Hedrick HL, Levin AV. Hypertensive retinopathy in a child caused by pheochromocytoma: identification after a failed school vision screening. J AAPOS. 2012;16(1):97–9.CrossRefPubMedGoogle Scholar
  93. 93.
    Hanssen H, Siegrist M, Neidig M, Renner A, Birzele P, Siclovan A, et al. Retinal vessel diameter, obesity and metabolic risk factors in school children (JuvenTUM 3). Atherosclerosis. 2012;221(1):242–8.CrossRefPubMedGoogle Scholar
  94. 94.
    Gopinath B, Flood VM, Burlutsky G, Louie JCY, Baur LA, Mitchell P. Dairy food consumption, blood pressure and retinal microcirculation in adolescents. Nutr Metab Cardiovasc Dis. 2014;24(11):1221–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jovanka Vasilevska-Ristovska
    • 1
  • Shawn Z. Hudes
    • 1
    • 2
  • Kirtiga Naguleswaran
    • 1
    • 3
  • Valerie Langlois
    • 4
    • 5
  • Mina Matsuda-Abedini
    • 4
    • 5
  • Rulan S. Parekh
    • 1
    • 4
    • 5
    • 6
  1. 1.Child Health Evaluative Sciences, Research InstituteHospital for Sick ChildrenTorontoCanada
  2. 2.Graduate Entry Medical SchoolUniversity of LimerickLimerickIreland
  3. 3.Royal College of Surgeons in IrelandDublin 2Ireland
  4. 4.Division of Pediatric NephrologyHospital for Sick ChildrenTorontoCanada
  5. 5.Department of PaediatricsUniversity of TorontoTorontoCanada
  6. 6.Division of NephrologyUniversity Health NetworkTorontoCanada

Personalised recommendations