Metronidazole Determination in Raw Milk with a Graphene Aerogel-Based Electrochemiluminescent Sensor and Its Effect on Cell Apoptosis

Abstract

Herein an electrochemiluminescence (ECL) sensor based on graphene aerogel (GA) for detecting metronidazole (MTZ) was proposed. The ECL behavior of the Ru(bpy)32+-doped silica nanoparticles (SiO2@Ru(bpy)32+ NPs) was investigated with MTZ as the coreactant. Quantitative detection of MTZ was realized as MTZ could effectively enhance the ECL signal of the SiO2@Ru(bpy)32+ NPs. A wide linear range of 2.5 to 250 μM (r = 0.9937) was obtained under optimized conditions, and a detection limit (S/N = 3) was achieved as low as 0.5 μM. Finally, the analytical application of the proposed sensor was evaluated by detecting a drug sample and MTZ residues in raw milk. Additionally, MTZ was an apoptosis inducer toward MCF-7 cells, and our method could measure the accurate concentration of MTZ which can cause serious apoptosis in cellular experiments. Thus, with good stability, acceptable precision, and reproducibility, the proposed sensor supports promising practicability in clinical analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson TJ, Defnet PA, Zhang B (2020) Electrochemiluminescence (ECL)-based electrochemical imaging using a massive array of bipolar ultramicroelectrodes. Anal Chem 92:6748–6755. https://doi.org/10.1021/acs.analchem.0c00921

    CAS  Article  PubMed  Google Scholar 

  2. Bard AJ et al (2004) Electrogenerated chemiluminescence. Marcel Dekker, Inc., New York

    Google Scholar 

  3. Bertoncello P, Forster RJ (2009) Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens Bioelectron 24:3191–3200. https://doi.org/10.1016/j.bios.2009.02.013

    CAS  Article  PubMed  Google Scholar 

  4. Bishop GW, Satterwhite-Warden JE, Bist I, Chen E, Rusling JF (2016) Electrochemiluminescence at bare and DNA-coated graphite electrodes in 3D-printed fluidic devices. ACS Sens 1:197–202. https://doi.org/10.1021/acssensors.5b00156

    CAS  Article  PubMed  Google Scholar 

  5. Cai F, Zhu Q, Zhao K, Deng A, Li J (2015) Multiple signal amplified electrochemiluminescent immunoassay for Hg2+ using graphene-coupled quantum dots and gold nanoparticles-labeled horseradish peroxidase. Environ Sci Technol 49:5013–5020. https://doi.org/10.1021/acs.est.5b00690

    CAS  Article  PubMed  Google Scholar 

  6. Cao JT, Wang YL, Zhang JJ, Dong YX, Liu FR, Ren SW, Liu YM (2018) Immuno-electrochemiluminescent imaging of a single cell based on functional nanoprobes of heterogeneous Ru(bpy)32+@SiO2/Au nanoparticles. Anal Chem 90:10334–10339. https://doi.org/10.1021/acs.analchem.8b02141

    CAS  Article  PubMed  Google Scholar 

  7. Cao JT, Liu FR, Fu XL, Ma JX, Ren SW, Liu YM (2019) A novel electrochemiluminescence resonance energy transfer system for simultaneous determination of two acute myocardial infarction markers using versatile gold nanorods as energy acceptors. Chem Commun 55:2829–2832. https://doi.org/10.1039/c9cc00563c

    CAS  Article  Google Scholar 

  8. Chadchan SB, Cheng M, Parnell LA, Yin Y, Schriefer A, Mysorekar IU, Kommagani R (2019) Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: a potential role for gut microbiota. Hum Reprod 34:1106–1116. https://doi.org/10.1093/humrep/dez041

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chen S, Ma H, Padelford JW, Qinchen W, Yu W, Wang S, Zhu M, Wang G (2019) Near infrared electrochemiluminescence of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)3 standard. J Am Chem Soc 141:9603–9609. https://doi.org/10.1021/jacs.9b02547

    CAS  Article  PubMed  Google Scholar 

  10. Chikhaliwala P, Chandra S (2016) Dendrimers: new tool for enhancement of electrochemiluminescent signal. J Organomet Chem 821:78–90. https://doi.org/10.1016/j.jorganchem.2016.04.017

    CAS  Article  Google Scholar 

  11. Dong YP, Gao TT, Zhou Y, Jiang LP, Zhu JJ (2015) Anodic electrogenerated chemiluminescence of Ru(bpy)32+ with CdSe quantum dots as coreactant and its application in quantitative detection of DNA. Sci Rep 5:15392. https://doi.org/10.1038/srep15392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Ensafi AA, Nasr-Esfahani P, Rezaei B (2018) Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots. Sensor Actuat B-Chem 270:192–199. https://doi.org/10.1016/j.snb.2018.05.024

    CAS  Article  Google Scholar 

  13. Guo W, Liu Y, Cao Z, Su B (2017) Imaging analysis based on electrogenerated chemiluminescence. J Anal Test 1:14. https://doi.org/10.1007/s41664-017-0013-9

    Article  Google Scholar 

  14. Han Q, Wang C, Li Z, Wu J, Liu PK, Mo F, Fu Y (2020) Multifunctional zinc oxide promotes electrochemiluminescence of porphyrin aggregates for ultrasensitive detection of copper ion. Anal Chem 92:3324–3331. https://doi.org/10.1021/acs.analchem.9b05262

    CAS  Article  PubMed  Google Scholar 

  15. Henry CM, Hollville E, Martin SJ (2013) Measuring apoptosis by microscopy and flow cytometry. Methods 61:90–97. https://doi.org/10.1016/j.ymeth.2013.01.008

    CAS  Article  PubMed  Google Scholar 

  16. Hosseini M, Karimi Pur MR, Norouzi P, Moghaddam MR, Faridbod F, Ganjali MR, Shamsi J (2015) Enhanced solid-state electrochemiluminescence of Ru(bpy)32+ with nano-CeO2 modified carbon paste electrode and its application in tramadol determination. Anal Methods-UK 7:1936–1942. https://doi.org/10.1039/c4ay02772h

    CAS  Article  Google Scholar 

  17. Hu L, Li H, Han S, Xu G (2011) Electrochemiluminescence in the presence of formaldehyde or formic acid. J Electroana Chem 656:289–292. https://doi.org/10.1016/j.jelechem.2010.09.018

    CAS  Article  Google Scholar 

  18. Huang J, Shen X, Wang R, Zeng Q, Wang L (2017) A highly sensitive metronidazole sensor based on a Pt nanospheres/polyfurfural film modified electrode. RSC Adv 7:535–542. https://doi.org/10.1039/c6ra25106d

    CAS  Article  Google Scholar 

  19. Jiang X, Wang Z, Wang H, Zhuo Y, Yuan R, Chai Y (2017) A novel metal-organic framework loaded with abundant N-(aminobutyl)-N-(ethylisoluminol) as a high-efficiency electrochemiluminescence indicator for sensitive detection of mucin1 on cancer cells. Chem Commun 53:9705–9708. https://doi.org/10.1039/c7cc05495e

    CAS  Article  Google Scholar 

  20. Kazakova SV, Baggs J, McDonald LC, Yi SH, Hatfield KM, Guh A, Reddy SC, Jernigan JA (2020) Association between antibiotic use and hospital-onset Clostridioides difficile infection in US acute care hospitals, 2006-2012: an ecologic analysis. Clin Infect Dis 70:11–18. https://doi.org/10.1093/cid/ciz169

    Article  PubMed  Google Scholar 

  21. Leland JK, Powell MJ (1990) Electrogenerated chemiluminescence: an oxidative-reduction type ecl reaction sequence using tripropyl amine. J Electrochem Soc 137:3127–3131

    CAS  Article  Google Scholar 

  22. Li L, Chen Y, Zhu JJ (2017) Recent advances in electrochemiluminescence analysis. Anal Chem 89:358–371. https://doi.org/10.1021/acs.analchem.6b04675

    CAS  Article  PubMed  Google Scholar 

  23. Li Z, Qin W, Liang G (2020) A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. Nanoscale 12:8828–8835. https://doi.org/10.1039/d0nr01025a

    CAS  Article  PubMed  Google Scholar 

  24. Liao N, Liu JL, Chai YQ, Yuan R, Zhuo Y (2020) DNA structure transition-induced affinity switch for biosensing based on the strong electrochemiluminescence platform from organic microcrystals. Anal Chem 92:3940–3948. https://doi.org/10.1021/acs.analchem.9b05433

    CAS  Article  PubMed  Google Scholar 

  25. Liu T, Zhu W, Yang X, Chen L, Yang R, Hua Z, Li G (2009) Detection of apoptosis based on the interaction between Annexin V and phosphatidylserine. Anal Chem 81:2410–2413. https://doi.org/10.1021/ac801267s

    CAS  Article  PubMed  Google Scholar 

  26. Liu R, Zhang C, Liu M (2015) Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics. Sensor Actuat B-Cheml 216:255–262. https://doi.org/10.1016/j.snb.2015.04.014

    CAS  Article  Google Scholar 

  27. Liu M, Wang D, Liu C, Liu R, Li H, Zhang C (2017) Battery-triggered open wireless electrochemiluminescence in a microfluidic cloth-based bipolar device. Sensor Actuat B-Chem 246:327–335. https://doi.org/10.1016/j.snb.2017.02.076

    CAS  Article  Google Scholar 

  28. Matsui Y, Funato Y, Imamura H, Miki H, Mizukami S, Kikuchi K (2017) Visualization of long-term Mg2+ dynamics in apoptotic cells using a novel targetable fluorescent probe. Chem Sci 8:8255–8264. https://doi.org/10.1039/c7sc03954a

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553. https://doi.org/10.1021/cr068083a

    CAS  Article  PubMed  Google Scholar 

  30. Qi L, Xia Y, Qi W, Gao W, Wu F, Xu G (2016) Increasing electrochemiluminescence intensity of a wireless electrode array chip by thousands of times using a diode for sensitive visual detection by a digital camera. Anal Chem 88:1123–1127. https://doi.org/10.1021/acs.analchem.5b04304

    CAS  Article  PubMed  Google Scholar 

  31. Saidi I, Soutrel I, Floner D, Fourcade F, Bellakhal N, Amrane A, Geneste F (2014) Indirect electroreduction as pretreatment to enhance biodegradability of metronidazole. J Hazard Mater 278:172–179. https://doi.org/10.1016/j.jhazmat.2014.06.003

    CAS  Article  PubMed  Google Scholar 

  32. Segovia-Sandoval SJ, Pastrana-Martínez LM, Ocampo-Pérez R, Morales-Torres S, Berber-Mendoza MS, Carrasco-Marín F (2020) Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: effect of operating parameters. Sep Purif Technol 237:116341. https://doi.org/10.1016/j.seppur.2019.116341

    CAS  Article  Google Scholar 

  33. Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N (2014) Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem Sci 5:2568–2572. https://doi.org/10.1039/c4sc00312h

    CAS  Article  Google Scholar 

  34. Tu X, Ma Y, Cao Y, Huang J, Zhang M, Zhang Z (2014) PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy. J Mater Chem B 2:2184–2192. https://doi.org/10.1039/c3tb21750g

    CAS  Article  PubMed  Google Scholar 

  35. Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, Paolucci F, Arbault S, Sojic N (2018) Surface-confined electrochemiluminescence microscopy of cell membranes. J Am Chem Soc 140:14753–14760. https://doi.org/10.1021/jacs.8b08080

    CAS  Article  PubMed  Google Scholar 

  36. Wang X, Wang J, Gengyo-Ando K, Gu L, Sun CL, Yang C, Shi Y, Kobayashi T, Shi Y, Mitani S, Xie XS, Xue D (2007) C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat Cell Biol 9:541–549. https://doi.org/10.1038/ncb1574

    CAS  Article  PubMed  Google Scholar 

  37. Wang K, Meng Y, Jiao X, Huang W, Fan D, Liu TC (2020a) Facile synthesis of an economic 3D surface-enhanced Raman scattering platform for ultrasensitive detection of antibiotics. Food Anal Method 13:1947–1955. https://doi.org/10.1007/s12161-020-01815-2

    Article  Google Scholar 

  38. Wang Y, Guo W, Yang Q, Su B (2020b) Electrochemiluminescence self-interference spectroscopy with vertical nanoscale resolution. J Am Chem Soc 142:1222–1226. https://doi.org/10.1021/jacs.9b12833

    CAS  Article  PubMed  Google Scholar 

  39. Wang Y, Jin R, Sojic N, Jiang D, Chen HY (2020c) Intracellular wireless analysis of single cells by bipolar electrochemiluminescence confined in a nanopipette. Angew Chem Int Ed 59:1–6. https://doi.org/10.1002/anie.202002323

    CAS  Article  Google Scholar 

  40. Wu Y, Zhou H, Wei W, Hua X, Wang L, Zhou Z, Liu S (2012) Signal amplification cytosensor for evaluation of drug-induced cancer cell apoptosis. Anal Chem 84:1894–1899. https://doi.org/10.1021/ac202672x

    CAS  Article  PubMed  Google Scholar 

  41. Xiong C, Liang W, Wang H, Zheng Y, Zhuo Y, Chai Y, Yuan R (2016) In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions. Chem Commun 52:5589–5592. https://doi.org/10.1039/c6cc01078d

    CAS  Article  Google Scholar 

  42. Ye Y, Wang L, Liu K, Li J (2020) A label-free and sensitive electrochemiluminescence sensor based on a simple one-step electrodeposition of Go/ZnS modified electrode for trace copper ions detection. Microchem J 155:104749. https://doi.org/10.1016/j.microc.2020.104749

    CAS  Article  Google Scholar 

  43. Yoon J, Kang SW, Shim WS, Lee JK, Jang DK, Gu N, Kim SK, Lee KT, Chung EK (2020) Quantification of metronidazole in human bile fluid and plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B 1138:121959. https://doi.org/10.1016/j.jchromb.2019.121959

    CAS  Article  Google Scholar 

  44. Zhang P, Zhuo Y, Chang Y, Yuan R, Chai Y (2015) Electrochemiluminescent graphene quantum dots as a sensing platform: a dual amplification for microRNA assay. Anal Chem 87:10385–10391. https://doi.org/10.1021/acs.analchem.5b02495

    CAS  Article  PubMed  Google Scholar 

  45. Zhang J, Jin R, Jiang D, Chen HY (2019) Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J Am Chem Soc 141:10294–10299. https://doi.org/10.1021/jacs.9b03007

    CAS  Article  PubMed  Google Scholar 

  46. Zhao WW, Wang J, Zhu YC, Xu JJ, Chen HY (2015) Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis. Anal Chem 87:9520–9531. https://doi.org/10.1021/acs.analchem.5b00497

    CAS  Article  PubMed  Google Scholar 

  47. Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760. https://doi.org/10.1038/ncomms8760

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Zhu MJ, Pan JB, Wu ZQ, Gao XY, Zhao W, Xia XH, Xu JJ, Chen HY (2018) Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt Janus nanoparticle. Angew Chem Int Ed 130:4074–4078. https://doi.org/10.1002/anie.201800706

    CAS  Article  Google Scholar 

Download references

Funding

This research is supported by Anhui Provincial Natural Science Foundation (Grants No. 2008085QB68 and No. 1808085QB50), Natural Science Foundation of Anhui Provincial Department of Education (No. KJ2019A0598), Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (No. gxyq2019168), Foundation of State Key Laboratory of Analytical Chemistry for Life Science (Grants No. SKLACLS2003), and Foundation of Henan Key Laboratory of Biomolecular Recognition and Sensing (Grants No. HKLBRSK1905).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gen Liu or Pei-Long Wang.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

Gen Liu declares that she has no conflict of interest. Hui Gao declares that she has no conflict of interest. Jiajia Chen declares that she has no conflict of interest. Congying Shao declares that she has no conflict of interest. Peilong Wang declares that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 855 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Gao, H., Chen, J. et al. Metronidazole Determination in Raw Milk with a Graphene Aerogel-Based Electrochemiluminescent Sensor and Its Effect on Cell Apoptosis. Food Anal. Methods (2021). https://doi.org/10.1007/s12161-021-01982-w

Download citation

Keywords

  • Electrochemiluminescence
  • Graphene aerogel
  • Metronidazole
  • Apoptosis