Application of Mixture Design and Kohonen Neural Network for Determination of Macro- and Microelement in Mullet (Mugil cephalus) by MIP OES

Abstract

In this study, the concentrations of macro- and microelement in different tissues (liver, gill, and muscle) of fish collected (Mugil cephalus) in Pontal Bay (Ilhéus, Bahia) were determined. A simplex-centroid mixture design was used to obtain the mixture applied to the decomposition of the samples. The elementary determination was made by microwave-induced plasma optical emission spectrometry (MIP OES), and the Kohonen self-organizing map (KSOM) was applied as an exploratory analysis tool. The accuracy of the procedure was assessed using certified reference material. Recoveries were obtained in the range of 99–103% and without a statistical difference (95% confidence level). Precision was estimated from the relative standard deviation, which ranged from 0.3 to 2.2%, and the limits of detection (mg kg−1) were 0.145 (Cu), 1.53 (Fe), 1.61 (K), 0.250 (Mg), 0.040 (Mn), 4.84 (P), and 2.12 (Zn). The KSOM provided efficient and precise separation of the studied tissues into three groups. The concentrations of Cu, Fe, and Zn were higher in the liver, while in the gills, they were the Mn.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agah H, Leermakers M, Elskens M, Fatemi SMR, Baeyens W (2009) Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environ Monit Assess 157:499–514. https://doi.org/10.1007/s10661-008-0551-8

    CAS  Article  PubMed  Google Scholar 

  2. Bacon JR, Butler OT, Cairns WRL, Cavoura O, Cook JM, Davidson CM, Mertz-Kraus R (2021) Atomic spectrometry update – a review of advances in environmental analysis. J Anal At Spectrom 35:9–53. https://doi.org/10.1039/D0JA90074E

    Article  Google Scholar 

  3. Balaram V (2020) Microwave plasma atomic emission spectrometry (MP-AES) and its applications – a critical review. Microchem J 159:105483. https://doi.org/10.1016/j.microc.2020.105483

    CAS  Article  Google Scholar 

  4. Batista MAS, Santos LN, Chagas BC, Lôbo IP, Novaes CG, Guedes WN, de Jesus RM, Amorim FAC, Pacheco CSV, Moreira LS, da Silva EGP (2020) Artificial neural network employment for element determination in Mugil cephalus by ICP OES in Pontal Bay, Brazil. Anal Methods 12:3713–3721. https://doi.org/10.1039/D0AY00799D

    CAS  Article  PubMed  Google Scholar 

  5. Bezerra MA, dos Santos QO, Santos AG, Novaes CG, Ferreira SLC, de Souza VS (2016) Simplex optimization: a tutorial approach and recent applications in analytical chemistry. Microchem J 124:45–54. https://doi.org/10.1016/j.microc.2015.07.023

    CAS  Article  Google Scholar 

  6. Bezerra MA, Ferreira SLC, Novaes CG, dos Santos AMP, Valasques GS, da Mata Cerqueira UMF, dos Santos Alves JP (2019) Simultaneous optimization of multiple responses and its application in analytical chemistry – a review. Talanta 194:941–959. https://doi.org/10.1016/j.talanta.2018.10.088

    CAS  Article  PubMed  Google Scholar 

  7. Bizzi CA, Flores ELM, Nóbrega JA, Oliveira JSS, Schmidt L, Mortari SR (2014) Evaluation of a digestion procedure based on the use of diluted nitric acid solutions and H2O2 for the multielement determination of whole milk powder and bovine liver by ICP-based techniques. J Anal At Spectrom 29:332–338. https://doi.org/10.1039/C3JA50330E

    CAS  Article  Google Scholar 

  8. Bonemann DH, Luckow ACB, Pereira CC, de Souza AO, Cadore S, Nunes AM, Vieira MA, Ribeiro AS (2020) Determination of total concentration and bioaccessible fraction of metals in tomatoes and their derivatives by MIP OES. J Food Compos Anal 103716:103716. https://doi.org/10.1016/j.jfca.2020.103716

    CAS  Article  Google Scholar 

  9. Bordon ICAC, Sarkis JES, Andrade NP, Hortellani MA, Favaro DIT, Kakazu MH, Cotrim MEB, Lavradas RT, Moreira I, Saint’Pierre TD, Hauser-Davis RA (2016) An environmental forensic approach for tropical estuaries based on metal bioaccumulation in tissues of Callinectes danae. Ecotoxicology 25:91–104. https://doi.org/10.1007/s10646-015-1570-1

    CAS  Article  PubMed  Google Scholar 

  10. Brereton RG (2012) Self organising maps for visualising and modelling. Chem Cent J 6:1–15. https://doi.org/10.1186/1752-153X-6-S2-S1

    Article  Google Scholar 

  11. Brereton RG (2009) Chemometrics for pattern recognition, 1st edn. Wiley, Chichester

    Google Scholar 

  12. Carvalho LSB, Silva CS, Nóbrega JA et al (2020) Microwave induced plasma optical emission spectrometry for multielement determination in instant soups. J Food Compos Anal 86:103376. https://doi.org/10.1016/j.jfca.2019.103376

    CAS  Article  Google Scholar 

  13. Cilla A, Zanirato V, Rodriguez-Estrada MT, Garcia-Llatas G (2014) Nutriential hazards: micronutrients: vitamins and minerals. In: Motarjemi Y (ed) Encyclopedia of food safety. Elsevier, pp 86–94. https://doi.org/10.1016/B978-0-12-378612-8.00431-5

  14. Copat C, Arena G, Fiore M, Ledda C, Fallico R, Sciacca S, Ferrante M (2013) Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem Toxicol 53:33–37. https://doi.org/10.1016/j.fct.2012.11.038

    CAS  Article  PubMed  Google Scholar 

  15. Cunningham PA, Sullivan EE, Everett KH, Kovach SS, Rajan A, Barber MC (2019) Assessment of metal contamination in Arabian/Persian Gulf fish: a review. Mar Pollut Bull 143:264–283. https://doi.org/10.1016/j.marpolbul.2019.04.007

    CAS  Article  PubMed  Google Scholar 

  16. FAO (1983) Compilation of legal limits for hazardous substances in fish and fishery products. Fisheries Circular. No. 764. http://www.fao.org/3/q5114e/q5114e.pdf. Accessed 18 Jan 2021

  17. Gallego Ríos SE, Peñuela GA, Ramírez Botero CM (2017) Method validation for the determination of mercury, cadmium, lead, arsenic, copper, iron, and zinc in fish through microwave-induced plasma optical emission spectrometry (MIP OES). Food Anal Methods 10:3407–3414. https://doi.org/10.1007/s12161-017-0908-0

    Article  Google Scholar 

  18. Gonzalez-Fernández M, García-Sevillano MA, Jara-Biedma R, García-Barrera T, Vioque A, López-Barea J, Pueyo C, Gómez-Ariza JL (2011) Size characterization of metal species in liver and brain from free-living (Mus spretus) and laboratory (Mus Musculus) mice by SEC-ICP-MS: application to environmental contamination assessment. J Anal At Spectrom 26:141–149. https://doi.org/10.1039/C0JA00127A

    Article  Google Scholar 

  19. Gupta UC, Gupta SC (2014) Sources and deficiency diseases of mineral nutrients in human health and nutrition: a review. Pedosphere 24:13–38. https://doi.org/10.1016/S1002-0160(13)60077-6

    CAS  Article  Google Scholar 

  20. Hauser-Davis RA, Bordon ICAC, Oliveira TF, Ziolli RL (2016) Metal bioaccumulation in edible target tissues of mullet (Mugil liza) from a tropical bay in Southeastern Brazil. J Trace Elem Med Biol 36:38–43. https://doi.org/10.1016/j.jtemb.2016.03.016

    CAS  Article  PubMed  Google Scholar 

  21. Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  22. Höller U, Bakker SJL, Düsterloh A, Frei B, Köhrle J, Konz T, Lietz G, McCann A, Michels AJ, Molloy AM, Murakami H, Rein D, Saris WHM, Schmidt K, Shimbo K, Schumacher S, Vermeer C, Kaput J, Weber P, Eggersdorfer M, Rezzi S (2018) Micronutrient status assessment in humans: current methods of analysis and future trends. TrAC Trends Anal Chem 102:110–122. https://doi.org/10.1016/j.trac.2018.02.001

    CAS  Article  Google Scholar 

  23. Khan GM (2018) Artificial neural network (ANNs). In: Kacprzyk J (ed) Evolution of artificial neural development: in search of learning genes. Springer International Publishing, Poland, pp 39–55

    Google Scholar 

  24. Kohonen T (1995) Self-organizing maps. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  25. La Colla NS, Botté SE, Oliva AL, Marcovecchio JE (2017) Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary through commercial fish species. Chemosphere 175:286–293. https://doi.org/10.1016/j.chemosphere.2017.02.002

    CAS  Article  PubMed  Google Scholar 

  26. Moreira LS, Sá ÍP, Machado RC, Nogueira ARA, da Silva EGP, Amaral CDB (2020) Coprecipitation magnesium(II) hydroxide as a strategy of pre-concentration for trace elemental determination by microwave-induced plasma optical emission spectrometry. Spectrochim Acta Part B At Spectrosc 169:105899. https://doi.org/10.1016/j.sab.2020.105899

    CAS  Article  Google Scholar 

  27. Naji A, Khan FR, Hashemi SH (2016) Potential human health risk assessment of trace metals via the consumption of marine fish in Persian Gulf. Mar Pollut Bull 109:667–671. https://doi.org/10.1016/j.marpolbul.2016.05.002

    CAS  Article  PubMed  Google Scholar 

  28. Novaes CG, Romão IL d S, Santos BG et al (2017) Screening of Passiflora L. mineral content using principal component analysis and Kohonen self-organizing maps. Food Chem 233:507–513. https://doi.org/10.1016/j.foodchem.2017.04.111

    CAS  Article  PubMed  Google Scholar 

  29. Nyeste K, Dobrocsi P, Czeglédi I, Czédli H, Harangi S, Baranyai E, Simon E, Nagy SA, Antal L (2019) Age and diet-specific trace element accumulation patterns in different tissues of chub (Squalius cephalus): juveniles are useful bioindicators of recent pollution. Ecol Indic 101:1–10. https://doi.org/10.1016/j.ecolind.2019.01.001

    CAS  Article  Google Scholar 

  30. Oliveira AF, Gonzalez MH, Nogueira ARA (2018) Use of multiple lines for improving accuracy, minimizing systematic errors from spectral interferences, and reducing matrix effects in MIP OES measurements. Microchem J 143:326–330. https://doi.org/10.1016/j.microc.2018.08.032

    CAS  Article  Google Scholar 

  31. Ozbek N, Tinas H, Atespare AE (2019) A procedure for the determination of trace metals in rice varieties using microwave induced plasma atomic emission spectrometry. Microchem J 144:474–478. https://doi.org/10.1016/j.microc.2018.10.010

    CAS  Article  Google Scholar 

  32. Pacheco CSV, da Silva EGP, Hauser-Davis RA, Dias F, Amorim FAC, de Jesus RM, Novaes CG, dos Santos AMP, Saint’Pierre TD (2017) Determination and evaluation of metallothionein and metals in Mugil cephalus (mullet) from Pontal Bay, Brazil. Bull Environ Contam Toxicol 98:84–90. https://doi.org/10.1007/s00128-016-1959-4

    CAS  Article  PubMed  Google Scholar 

  33. Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421–422:3–16. https://doi.org/10.1016/j.scitotenv.2011.03.013

    CAS  Article  PubMed  Google Scholar 

  34. Piló D, Ben-Hamadou R, Pereira F, Carriço A, Pereira P, Corzo A, Gaspar MB, Carvalho S (2016) How functional traits of estuarine macrobenthic assemblages respond to metal contamination? Ecol Indic 71:645–659. https://doi.org/10.1016/j.ecolind.2016.07.019

    CAS  Article  Google Scholar 

  35. Pinto TR, Boehs G (2008) Nematopsis sp. (Apicomplexa: Eugregarinida) in Mytella guyanensis (Lamarck, 1819) (Bivalvia: Mytilidae) from estuarine region of the Cachoeira river, Ilhéus, Bahia, Brazil. Brazilian J Vet Res Anim Sci 45:95. https://doi.org/10.11606/issn.1678-4456.bjvras.2008.26705

    Article  Google Scholar 

  36. Pires LN, Dias FS, Teixeira LSG (2019) Assessing the internal standardization of the direct multi-element determination in beer samples through microwave-induced plasma optical emission spectrometry. Anal Chim Acta 1090:31–38. https://doi.org/10.1016/j.aca.2019.09.033

    CAS  Article  PubMed  Google Scholar 

  37. Portugal LA, Ferreira HS, dos Santos WNL, Ferreira SLC (2007) Simultaneous pre-concentration procedure for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry. Microchem J 87:77–80. https://doi.org/10.1016/j.microc.2007.05.008

    CAS  Article  Google Scholar 

  38. Rahman MS, Solaiman Hossain M, Ahmed MK et al (2019) Assessment of heavy metals contamination in selected tropical marine fish species in Bangladesh and their impact on human health. Environ Nanotechnology, Monit Manag 11:100210. https://doi.org/10.1016/j.enmm.2019.100210

    Article  Google Scholar 

  39. Ribeiro FAL, Rosário FF, Bezerra MCM, Wagner RCC, Bastos ALM, Melo VLA, Poppi RJ (2014) Evaluation of chemical composition of waters associated with petroleum production using Kohonen neural networks. Fuel 117:381–390. https://doi.org/10.1016/j.fuel.2013.08.086

    CAS  Article  Google Scholar 

  40. Rocha AA, da Costa LGBA, Duyck C, Barbosa JR, Lorençatto R (2020) Aerosol dilution as a new sample introduction strategy for microwave-induced plasma optical emission spectrometry. Anal Chim Acta 1140:41–49. https://doi.org/10.1016/j.aca.2020.10.008

    CAS  Article  PubMed  Google Scholar 

  41. Sá IP, Higuera JM, Costa VC et al (2020) Determination of trace elements in meat and fish samples by MIP OES using solid-phase extraction. Food Anal Methods 13:238–248. https://doi.org/10.1007/s12161-019-01615-3

    Article  Google Scholar 

  42. Sande D, Melo TA, Oliveira GSA et al (2010) Bivalve molluscs prospection in pollution study from Cachoeira and Santana rivers in Ilheus, Bahia, Brazil. Brazilian J Vet Res Anim Sci 47:190. https://doi.org/10.11606/issn.1678-4456.bjvras.2010.26854

    Article  Google Scholar 

  43. Santos HM, Coutinho JP, Amorim FAC, Lôbo IP, Moreira LS, Nascimento MM, de Jesus RM (2019) Microwave-assisted digestion using diluted HNO3 and H2O2 for macro and microelements determination in guarana samples by ICP OES. Food Chem 273:159–165. https://doi.org/10.1016/j.foodchem.2017.12.074

    CAS  Article  PubMed  Google Scholar 

  44. Silva E, Costa FN, Souza TL et al (2016) Assessment of trace elements in tissues of fish species: multivariate study and safety evaluation. J Braz Chem Soc 27:2234–2245. https://doi.org/10.5935/0103-5053.20160116

    CAS  Article  Google Scholar 

  45. Silva E d S, da Silva EGP, Silva D d S et al (2019) Evaluation of macro and micronutrient elements content from soft drinks using principal component analysis and Kohonen self-organizing maps. Food Chem 273:9–14. https://doi.org/10.1016/j.foodchem.2018.06.021

    CAS  Article  PubMed  Google Scholar 

  46. Vatanen T, Osmala M, Raiko T, Lagus K, Sysi-Aho M, Orešič M, Honkela T, Lähdesmäki H (2015) Self-organization and missing values in SOM and GTM. Neurocomputing 147:60–70. https://doi.org/10.1016/j.neucom.2014.02.061

    Article  Google Scholar 

  47. Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3:111–126. https://doi.org/10.3233/IDA-1999-3203

    Article  Google Scholar 

  48. Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Netw 11:586–600. https://doi.org/10.1109/72.846731

    CAS  Article  PubMed  Google Scholar 

  49. Weber P, Behr ER, Knorr C d L et al (2013) Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem J 106:61–66. https://doi.org/10.1016/j.microc.2012.05.004

    CAS  Article  Google Scholar 

  50. WHO (1996) Guidelines for drinking-water quality. In: Health criteria and other supporting information, vol 2. World Health Organization, Geneva

    Google Scholar 

  51. Williams CB, Amais RS, Fontoura BM, Jones BT, Nóbrega JA, Donati GL (2019) Recent developments in microwave-induced plasma optical emission spectrometry and applications of a commercial Hammer-cavity instrument. TrAC Trends Anal Chem 116:151–157. https://doi.org/10.1016/j.trac.2019.05.007

    CAS  Article  Google Scholar 

  52. Yılmaz F, Özdemir N, Demirak A, Tuna AL (2007) Heavy metal levels in two fish species Leuciscus cephalus and Lepomis gibbosus. Food Chem 100:830–835. https://doi.org/10.1016/j.foodchem.2005.09.020

    CAS  Article  Google Scholar 

Download references

Funding

The authors received funding from Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant numbers 306698/2019-6 and 421694/2018-1), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001 under the W.N.G. grant fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erik Galvão Paranhos da Silva.

Ethics declarations

Conflict of Interest

Clissiane Soares Viana Pacheco declares that she has no conflict of interest. Floriatan dos Santos Costa declares that he has no conflict of interest. Wesley Nascimento Guedes declares that he has no conflict of interest. Marina Santos de Jesus declares that she has no conflict of interest. Thiago Pereira das Chagas declares that he has no conflict of interest. Ana Maria Pinto dos Santos declares that she has no conflict of interest. Daniel de Castro Lima declares that he has no conflict of interest. Erik Galvão Paranhos da Silva declares that he has no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This study was approved by the Research Ethics Committee of the State University of Santa Cruz (No 07/2016) and National System for the Management of Genetic Heritage and Associated Traditional Knowledge (No A2C2576).

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pacheco, C.S.V., Costa, F.S., Guedes, W.N. et al. Application of Mixture Design and Kohonen Neural Network for Determination of Macro- and Microelement in Mullet (Mugil cephalus) by MIP OES. Food Anal. Methods (2021). https://doi.org/10.1007/s12161-021-01969-7

Download citation

Keywords

  • Mugil cephalus
  • Mixture design
  • Kohonen self-organizing map
  • MIP OES