Skip to main content
Log in

Simultaneous Determination of Aflatoxins in Bread by In-Syringe Dispersive Micro-Solid Phase Extraction Using Magnetic Three-Dimensional Graphene Followed by HPLC-FLD

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this study, the new approach of dispersive micro-solid phase extraction using a magnetic sheet was developed. A circle magnetic sheet (diameter, 25 mm; thickness, 0.4 mm) was perforated and used as a support for fixing and re-collecting three-dimensional magnetic graphene nanoparticles as an adsorbent. The method was coupled with high-performance liquid chromatography-fluorescence detector (HPLC-FLD) and utilized for extraction of aflatoxins (B1, B2, G1, and G2). All steps of the extraction procedure including sample loading, sorbent dispersion, and re-collecting, and elution were performed using a syringe. The significant parameters such as adsorbent amount, desorption conditions, flow rates, ionic strength, and pH which influence extraction efficiency was investigated. The linear dynamic range was 0.2–1000 μg kg−1, with a coefficient of determinations > 0.9914. The limits of detection and quantification were 0.06–0.1 and 0.20–0.33 μg kg−1, respectively. The developed method was applied to the analysis of aflatoxins in real white and moldy bread samples, and the related extraction recoveries of the four aflatoxins were obtained in the range of 59–69% (RSD, 4.4–5.6%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade PD, da Silva JLG, Caldas ED (2013) Simultaneous analysis of aflatoxins B1, B2, G1, G2, M1, and ochratoxin A in breast milk by high-performance liquid chromatography/fluorescence after liquid–liquid extraction with low temperature purification (LLE–LTP). J Chromatogr A 1304:61–68

    Article  CAS  PubMed  Google Scholar 

  • Augusto F, Hantao L, Mogollo’n N, Braga S (2013) New materials and trends in sorbents for solid-phase extraction. TrAC Trends Anal Chem 43:14–23

    Article  CAS  Google Scholar 

  • Brera C, Debegnach F, De Santis B, Pannunzi E, Berdini C, Prantera E, Gregori E, Miraglia M (2012) Simultaneous determination of aflatoxins and ochratoxin A in baby foods and paprika by HPLC with fluorescence detection: a single-labor. Talanta 83:1442–1446

    Article  CAS  Google Scholar 

  • Campone L, Piccinelli AL, Celano R, Rastrelli L (2012) Application of dispersive liquid–liquid microextraction for the determination of aflatoxins B1, B2, G1 and G2 in cereal products. J Chromatogr A 1218:7648–7654

    Article  CAS  Google Scholar 

  • Cavaliere C, Foglia P, Guarino C, Nazzari M, Samperi R, Lagana A (2007) Determination of aflatoxins in olive oil by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 596:141–148

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Cao X, Tao Y, Wu Q, Pan Y, Huang L, Wang X, Wang Y, Peng D, Liu Z, Yuan Z (2012) Development of a sensitive and robust liquid chromatography coupled with tandem mass spectrometry and a pressurized liquid extraction for the determination of aflatoxins and ochratoxin A in animal derived foods. J Chromatogr A 1253:110–119

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem 117:2842–2845

    Article  Google Scholar 

  • Di Stefano V, Pitonzo R, Avellone G, Di Fiore A, Monte L, Tabis Ogorka AZ (2015) Determination of aflatoxins and ochratoxins in sicilian sweet wines by high-performance liquid chromatography with fluorometric detection and immunoaffinity cleanup. Food Anal Methods 8:596–577

    Article  Google Scholar 

  • Dos Reis LC, Vidal L, Canals A (2017) Graphene oxide/Fe3O4 as sorbent for magnetic solid-phase extraction coupled with liquid chromatography to determine 2,4,6-trinitrotoluene in water samples. Anal Bioanal Chem 409:2665–2674

    Article  CAS  Google Scholar 

  • Elsanhoty RM, Fawzy Ramadan M, El-Gohery SS, Abol-Ela MF, Azeke MA (2013) Ability of selected microorganisms for removing aflatoxins in vitro and fate of aflatoxins in contaminated wheat during baladi bread baking. Food Control 33:287–292

    Article  CAS  Google Scholar 

  • Es’haghi Z, Sorayaei H, Samadi F, Masrournia M, Bakherad Z (2011) Fabrication of a novel nanocomposite based on sol–gel process for hollow fiber–solid phase microextraction of aflatoxins: B1 and B2 in cereals combined with high performance liquid chromatography–diode array detection. J Chromatogr B 879:3034–3040

    Article  CAS  Google Scholar 

  • European commission, (EC) No 1881/2006 (2006). Off J Eur Union 364:5-24.

  • Folloni S, Bellocchi G, Kagkli DM, Pastor-Benito S, Aguilera M, Mazzeo A, Querci M, Van den Eede G, Ermolli M (2011) Development of an ELISA reverse-based assay to assess the presence of mycotoxins in cereal flour. Food Anal Methods 4:221–227

    Article  Google Scholar 

  • Han Z, Zheng Y, Luan L, Cai Z, Ren Y, Wu Y (2010) An ultra-high performance liquid chromatography–tandem mass spectrometry method for simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in traditional Chinese medicines. Anal Chim Acta 664:165–171

    Article  CAS  PubMed  Google Scholar 

  • Hashemi M, Taherimaslak Z, Rashidib S (2014) Application of magnetic solid phase extraction for separation and determination of aflatoxins B1 and B2 in cereal products by high performance liquid chromatography-fluorescence detection. J Chromatogr B 960:200–208

    Article  CAS  Google Scholar 

  • Hassan J, Habibi S (2011) Reverse homogeneous liquid–liquid extraction as a miniaturized method for extraction of aflatoxins from pistachio and wheat and LC post-column derivatization-fluorescence detection. Chromatographia 73:9–10

    Google Scholar 

  • Holcmb M, Thompson HC, Cooper WM, Hooper ML (1996) SFE extraction of aflatoxins (B1, B2, G1 and G2) from corn and analysis by HPLC. J Supercrit Fluids 9:118–121

    Article  Google Scholar 

  • IARC (2012) IARC Monograph on the evalution of carcinogenic risk to humans. IARC, Lyon 182 (2002) 171–300.

  • Kabak B (2012) Determination of aflatoxins and ochratoxin A in retail cereal products from Turkey by high performance liquid chromatography with fluorescence detection. Food Control 28:1–6

    Article  CAS  Google Scholar 

  • Kim HJ, Lee MJ, Kim HJ, Cho SK, Park HJ, Jeong MH (2017) Analytical method development and monitoring of Aflatoxin B1, B2, G1, G2 and Ochratoxin A in animal feed using HPLC with Fluorescence detector and photochemical reaction device. Cogent Food Agric 3(1-8):1419788

    Google Scholar 

  • Krusong W, Pothimon R, Vichitraka A (2019) Inhibitory impact of vapor-phase ethanol on conidia germination and mycelial growth of Aspergillus fumigatus on bread. Food Control 95:165–169

    Article  CAS  Google Scholar 

  • Mahpishanian S, Sereshti H (2016) Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination. J Chromatogr A 1443:43–53

    Article  CAS  PubMed  Google Scholar 

  • Nouri N, Sereshti H, Farahani A (2018) Graphene-coated magnetic-sheet solid-phase extraction follow by HPLC with fluorescence for the determination of aflatoxins B1, B2, G1, G2 in soy-based samples. J Sep Sci 41:3258–3266

    Article  CAS  PubMed  Google Scholar 

  • Peña R, Alcaraz MC, Arce L, Rı́os A, Valcárcel M (2002) Screening of aflatoxins in feed samples using a flow system coupled to capillary electrophoresis. J Chromatogr A 967:303–314

    Article  PubMed  Google Scholar 

  • Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116:1–9

    Article  CAS  PubMed  Google Scholar 

  • Saalia FK, Phillips RD (2010) Degradation of aflatoxins in aqueous buffer in the presence of nucleophiles. Food Control 21:1066–1069

    Article  CAS  Google Scholar 

  • Sadeghi A, Ebrahimi M, Mortazavi SA, Abedfar A (2019) Application of the selected antifungal LAB isolate as a protective starter culture in pan whole-wheat sourdough bread. Food Control 95:298–307

    Article  CAS  Google Scholar 

  • Safarikova M, Safarik I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194:108–112

    Article  CAS  Google Scholar 

  • Saladino F, Luz C, Manyes L, Fernández-Franzón M, Meca G (2016) In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement. Food Control 67:273–277

    Article  CAS  Google Scholar 

  • Serrano AB, Font G, Mañes J, Ferrer E (2016) Dispersive liquid-liquid microextraction for the determination of emerging fusarium mycotoxins in water. Food Anal Methods 9:856–862

    Article  Google Scholar 

  • Sheibani A, Tabrizchi M, Ghaziaskar HS (2008) Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta 75:233–238

    CAS  PubMed  Google Scholar 

  • Simão V, Merib J, Dias AN, Carasek E (2016) Novel analytical procedure using a combination of hollow fiber supported liquid membrane and dispersive liquid–liquid microextraction for the determination of aflatoxins in soybean juice by high performance liquid chromatography – fluorescence detector. Food Chem 196:292–300

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos I, Fernandes C (2017) Magnetic solid phase extraction for determination of drugs in biological matrices. TrAC Trends Anal Chem 89:41–52

    Article  CAS  Google Scholar 

  • Vosough M, Bayat M, Salemi A (2010) Matrix-free analysis of aflatoxins in pistachio nuts using parallel factor modeling of liquid chromatography diode-array detection data validation study. Anal Chim Acta 663:11–18

    Article  CAS  PubMed  Google Scholar 

  • Wilcox J, Donnelly C, Leeman D, Marley E (2015) The use of immunoaffinity columns and connected in tandem for selective cost-effective mycotoxin clean-up liquid prior to multi-mycotoxin chromatographic–tandem mass matrices spectrometric analysis in food. J Chromatogr A 1400:91–97

    Article  CAS  PubMed  Google Scholar 

  • Yang X, An R (2011) Application engineer of liquid chromatography life science and chemical analysis group. Agilent Technologies shanghai, China www.agilent.com/chem. Accessed 6 July 2019

  • Yogendrarajah P, Pouckeb CV, De Meulenaera B, De Saeger S (2013) Development and validation of a QuEChERS based liquid chromatography tandem mass spectrometry method for the determination of multiple mycotoxins in spices. J Chromatogr A 1297:1–11

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Li P, Zhang Q, Zhang W, Ding X, Wang X (2013) Graphene oxide: an adsorbent for the extraction and quantification of aflatoxins in peanuts by high-performance liquid chromatography. J Chromatogr A 1318:27–34

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhu Y, Jiao Y, Ning J, Yang Y (2016) Ionic-liquid-based dispersive liquid–liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1, B2, G1, and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection. J Sep Sci 39:3789–3797

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Liu P, Su XC, Liao YH, Lei NS, Liang YH, Zhou SH, Lin WS, Chen J, Feng YQ, Tang Y (2017) Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils. Anal Chim Acta 970:38–46

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received financial support from the Iran National Science Foundation (INSF) through Research Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Sereshti.

Ethics declarations

Conflict of Interest

Hassan Sereshti declares that he has no conflict of interest. Farnaz Khodayari declares that he has no conflict of interest. Nina Nouri declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

A statement regarding “informed consent” is not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sereshti, H., Khodayari, F. & Nouri, N. Simultaneous Determination of Aflatoxins in Bread by In-Syringe Dispersive Micro-Solid Phase Extraction Using Magnetic Three-Dimensional Graphene Followed by HPLC-FLD. Food Anal. Methods 12, 2273–2281 (2019). https://doi.org/10.1007/s12161-019-01582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-019-01582-9

Keywords

Navigation