Skip to main content
Log in

A β-CD/MWCNT-modified-microelectrode array for rapid determination of imidacloprid in vegetables

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This work introduces a β-cyclodextrin/multi-walled carbon nanotube (β-CD/MWCNT)–modified microelectrode array (MEA) for rapid determination of imidacloprid in vegetables. The MEA, fabricated on a silicon wafer, contains 20 parallel-connected working electrodes, a counter electrode and a reference electrode. The MWCNT is drop-casted onto the working electrode area, and β-CD is decorated onto the MWCNT layer with electropolymerization. Electrochemical behaviors of the as-fabricated sensor are investigated with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Obtained results validate that the proposed sensor has a large electroactive area, great electrical conductivity, and high sensitivity. During preparation and application of the sensor, 0.5 mg mL−1 MWCNT suspension and phosphate-buffered solution (0.1 mol L−1, pH = 7) are found to optimize experimental conditions. Under optimized conditions, a wide linear range as 5 to 100 μmol L−1 is obtained for target imidacloprid, and the limit of detection (LOD, S/N = 3) is well defined as 0.629 μmol L−1. The sensor is used for sensing imidacloprid in cabbage, cucumber, and tomato. The results from this method are in accordance with high-performance liquid chromatography-mass spectrometry (HPLC-MS) data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aikens DANE (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Banda H, Périé S, Daffos B, Dubois L, Crosnier O, Simon P, Taberna P-L, Duclairoir F (2019) Investigation of ion transport in chemically tuned pillared graphene materials through electrochemical impedance analysis. Electrochim Acta 296:882–890

    Article  CAS  Google Scholar 

  • Climent V, Feliu JM (2018) Cyclic voltammetry. In: Wandelt K (ed) Encyclopedia of interfacial chemistry. Elsevier, Oxford, pp 48–74

    Chapter  Google Scholar 

  • Ghanbarian M, Zeinali S, Mostafavi A (2018) A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. Sensors Actuators B Chem 267:381–391

    Article  CAS  Google Scholar 

  • Gilbert S, Jeong HK, Dowben PA (2017) Cyclodextrin-carbon nanotube composites for fluorescent detection of cholesterol. Chem Phys Lett 687:222–226

    Article  CAS  Google Scholar 

  • Gómez M, Arancibia V, Aliaga M, Núñez C, Rojas-Romo C (2016) Determination of Sudan I in drinks containing Sunset yellow by adsorptive stripping voltammetry. Food Chem 212:807–813

    Article  CAS  PubMed  Google Scholar 

  • Jung W, Jang A, Bishop PL, Ahn CH (2011) A polymer lab chip sensor with microfabricated planar silver electrode for continuous and on-site heavy metal measurement. Sensors Actuators B Chem 155(1):145–153

    Article  CAS  Google Scholar 

  • Kong L, Jiang X, Zeng Y, Zhou T, Shi G (2013) Molecularly imprinted sensor based on electropolmerized poly(o-phenylenediamine) membranes at reduced graphene oxide modified electrode for imidacloprid determination. Sensors Actuators B Chem 185:424–431

    Article  CAS  Google Scholar 

  • Maity D, Kumar RTR (2019) Highly sensitive amperometric detection of glutamate by glutamic oxidase immobilized Pt nanoparticle decorated multiwalled carbon nanotubes(MWCNTs)/polypyrrole composite. Biosens Bioelectron 130:307–314

    Article  CAS  PubMed  Google Scholar 

  • Majidi MR, Ghaderi S (2017) Facile fabrication and characterization of silver nanodendrimers supported by graphene nanosheets: a sensor for sensitive electrochemical determination of Imidacloprid. J Electroanal Chem 792:46–53

    Article  CAS  Google Scholar 

  • Malanga M, Fejős I, Varga E, Benkovics G, Darcsi A, Szemán J, Béni S (2017) Synthesis, analytical characterization and capillary electrophoretic use of the single-isomer heptakis-(6-O-sulfobutyl)-beta-cyclodextrin. J Chromatogr A 1514:127–133

    Article  CAS  PubMed  Google Scholar 

  • Michlig MP, Merke J, Pacini AC, Orellano EM, Beldoménico HR, Repetti MR (2018) Determination of imidacloprid in beehive samples by UHPLC-MS/MS. Microchem J 143:72–81

    Article  CAS  Google Scholar 

  • Oliveira AEFO, Bettio GB, Pereira AC s P (2018) Optimization of an electrochemical sensor for determination of imidacloprid based on β-cyclodextrin electropolymerization on glassy carbon electrode. Electroanalysis 30(9):1929–1937

    Article  CAS  Google Scholar 

  • Papp Z, Svancara I, Guzsvany V, Vytras K, Gaal F (2009) Voltammetric determination of imidacloprid insecticide in selected samples using a carbon paste electrode. Microchim Acta 166(1-2):169–175

    Article  CAS  Google Scholar 

  • Rios FM, Wilcoxen TE, Zimmerman LM (2017) Effects of imidacloprid on Rana catesbeiana immune and nervous system. Chemosphere 188:465–469

    Article  CAS  PubMed  Google Scholar 

  • Sá Couto AR, Ryzhakov A, Loftsson T (2018) Self-Assembly of α-Cyclodextrin and β-cyclodextrin: identification and development of analytical techniques. J Pharm Sci 107(8):2208–2215

    Article  CAS  PubMed  Google Scholar 

  • Sheets LP (2014) Imidacloprid. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edn. Academic Press, Oxford, pp 1000–1003

    Chapter  Google Scholar 

  • Su W-H, Sun D-W, He J-G, Zhang L-B (2017) Variation analysis in spectral indices of volatile chlorpyrifos and non-volatile imidacloprid in jujube (Ziziphus jujuba Mill.) using near-infrared hyperspectral imaging (NIR-HSI) and gas chromatograph-mass spectrometry (GC–MS). Comput Electron Agric 139:41–55

    Article  Google Scholar 

  • Sun D, Li H, Li M, Li C, Dai H, Sun D, Yang B (2018) Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sensors Actuators B Chem 259:433–442

    Article  CAS  Google Scholar 

  • Urbanová V, Bakandritsos A, Jakubec P, Szambó T, Zbořil R (2017) A facile graphene oxide based sensor for electrochemical detection of neonicotinoids. Biosens Bioelectron 89:532–537

    Article  CAS  PubMed  Google Scholar 

  • Varan G, Varan C, Erdoğar N, Hıncal AA, Bilensoy E (2017) Amphiphilic cyclodextrin nanoparticles. Int J Pharm 531(2):457–469

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhang X, Wang M, He L, Zhang Z (2018) Preparation of Cu2O/CNTs composite and its application as sensing platform for detecting nitrite in water environment. Measurement 128:189–196

    Article  Google Scholar 

  • Xu Z, Dong Q, Otieno B, Liu Y, Williams I, Cai D, Li Y, Lei Y, Li B (2016a) Real-time in situ sensing of multiple water quality related parameters using micro-electrode array (MEA) fabricated by inkjet-printing technology (IPT). Sensors Actuators B Chem 237:1108–1119

    Article  CAS  Google Scholar 

  • Xu Y, Zhang W, Shi J, Zou X, Li Z, Zhu Y (2016b) Microfabricated interdigitated Au electrode for voltammetric determination of lead and cadmium in Chinese mitten crab (Eriocheir sinensis). Food Chem 201:190–196

    Article  CAS  PubMed  Google Scholar 

  • Zanello P, Connelly NG (2003) Inorganic electrochemistry: theory, practice and applications. R Soc Chem

  • Zhang W, Zhang H, Williams SE, Zhou AH (2015) Microfabricated three-electrode on-chip PDMS device with a vibration motor for stripping voltammetric detection of heavy metal ions. Talanta 132:321–326

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xu Y, Tahir HE, Zou X (2017a) Determinations of trace lead in various natural samples by a novel active microband-electrode probe. Chem Eng J 309:305–312

    Article  CAS  Google Scholar 

  • Zhang W, Xu Y, Zou X, Wang P (2017b) A real-time-range potentiostat coupled to nano-Au-modified microband electrode array for high-speed stripping determination of human blood lead. Biosens Bioelectron 97:267–272

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xu Y, Zou X (2018) Rapid determination of cadmium in rice using an all-solid RGO-enhanced light addressable potentiometric sensor. Food Chem 261(1-7):1–7

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the National Key R&D Program of China (2017YFD0400102; 2017YFC1600805), the National Postdoctoral Funding of China (2018T110460; 2017M611739), and the National Natural Science Foundation of China (31772073, 60901079).

Table 1 Results of determination of imidacloprid in three vegetable samples

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zou.

Ethics declarations

Conflict of Interest

Wen Zhang declares no conflict of interest. Chao Liu declares no conflict of interest. Xiaobo Zou declares no conflict of interest. Han Zhang declares no conflict of interest. Yiwei Xu declares no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent is not applicable for the nature of this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Table S1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, C., Zou, X. et al. A β-CD/MWCNT-modified-microelectrode array for rapid determination of imidacloprid in vegetables. Food Anal. Methods 12, 2326–2333 (2019). https://doi.org/10.1007/s12161-019-01580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-019-01580-x

Keywords

Navigation