A New Tool for Interpretation of Thermal Stability of Raw Milk by Means of the Alizarol Test Using a PLS Model on a Mobile Device

  • Gilson Augusto Helfer
  • Bruna Tischer
  • Paula Freitas Filoda
  • Alessandra Betina Parckert
  • Ronaldo Bastos dos Santos
  • Layane Lenardon Vinciguerra
  • Marco Flôres Ferrão
  • Juliano Smanioto Barin
  • Adilson Ben da Costa
Article
  • 10 Downloads

Abstract

This article describes the development of a new tool for interpreting the thermal stability of raw milk by means of the alizarol test, using a multivariate calibration model on a mobile device. The alizarol test is a semiquantitative test that uses an alcoholic solution containing a pH indicator (alizarin). Color judgment and correlation with pH are done visually and may involve several errors and differences between one analyst and another. Therefore, a pH scale (3 to 12) was constructed with raw milk for the alizarol test using a mobile device for image acquisition for each pH point (in triplicate). For quantitative pH determination, a new version of the PhotoMetrix® app was developed (named PhotoMetrix Pro®), including partial least square (PLS) regression tools, choosing RGB histograms and mean center preprocessing. The alizarol stability test was performed using 2 mL of sample and 2 mL of alizarol. To verify the performance of the PLS model, seven samples from different milk producers were analyzed. The results indicate that the root mean square error of calibration (RMSEC) was 0.25, and the root mean square error of prediction (RMSEP) was 0.30, very satisfactory. The results obtained by the proposed method were compared to those obtained using the potentiometric method (reference method); agreement between 95.0 and 100.9% was obtained, without statistical difference (p > 0.05). This application using PhotoMetrix Pro® could be an alternative for fast and reliable interpretation of the alizarol test.

Keywords

Raw milk Smartphone Digital image analysis pH Alizarol test 

Notes

Acknowledgments

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with Ethical Standards

Conflict of Interest

Gilson Augusto Helfer declares that he has no conflict of interest. Bruna Tischer declares that she has no conflict of interest. Paula Freitas Filoda declares that she has no conflict of interest. Alessandra Betina Parckert declares that she has no conflict of interest. Ronaldo Bastos dos Santos declares that he has no conflict of interest. Layane Lenardon Vinciguerra declares that she has no conflict of interest. Marco Flôres Ferrão declares that he has no conflict of interest. Juliano Smanioto Barin declares that he has no conflict of interest. Adilson Ben da Costa declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

References

  1. Amador-Espejo GG, Gallardo-Chacon JJ, Nykänen H, Juan B, Trujillo AJ (2015) Effect of ultra high-pressure homogenization on hydro- and liposoluble milk vitamins. Food Res Int 77:49–54.  https://doi.org/10.1016/j.foodres.2015.04.025 CrossRefGoogle Scholar
  2. Brasil (2011) Instrução Normativa n° 62, de 29 de dezembro de 2011. Diário Oficial da República Federativa do Brasil, Brasília, 30 dez. 2011Google Scholar
  3. Bueno D, Muñoz R, Marty JL (2016) Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A. Sensors Actuators B Chem 232:462–468.  https://doi.org/10.1016/j.snb.2016.03.140 CrossRefGoogle Scholar
  4. Cappozzo JC, Koutchma T, Barnes G (2015) Chemical characterization of milk after treatment with thermal (HTST and UHT) and nonthermal (turbulent flow ultraviolet) processing technologies. J Dairy Sci 98:5068–5079.  https://doi.org/10.3168/jds.2014-9190 CrossRefGoogle Scholar
  5. Chavan RS, Sehrawat R, Mishra V, Bhatt S (2016) Milk: processing of milk. In: Encyclopedia of Food and Health Academic Press, Oxford, pp 729–735.  https://doi.org/10.1016/B978-0-12-384947-2.00464-5
  6. Claeys WL, Cardoen S, Daube G, de Block J, Dewettinck K, Dierick K, de Zutter L, Huyghebaert A, Imberechts H, Thiange P, Vandenplas Y, Herman L (2013) Raw or heated cow milk consumption: review of risks and benefits. Food Control 31:251–262.  https://doi.org/10.1016/j.foodcont.2012.09.035 CrossRefGoogle Scholar
  7. Claeys WL, Verraes C, Cardoen S, de Block J, Huyghebaert A, Raes K, Dewettinck K, Herman L (2014) Consumption of raw or heated milk from different species: an evaluation of the nutritional and potential health benefits. Food Control 42:188–201.  https://doi.org/10.1016/j.foodcont.2014.01.045 CrossRefGoogle Scholar
  8. Cruz-Fernández M, Luque-Cobija MJ, Cervera ML, Morales-Rubio A, de la Guardia M (2017) Smartphone determination of fat in cured meat products. Microchem J 132:8–14.  https://doi.org/10.1016/j.microc.2016.12.020 CrossRefGoogle Scholar
  9. FAO (1996) Milk testing and quality control, Training Programme for Small Scale Dairy Sector and Dairy Training Institute - Naivasha vol 2. http://www.fao.org/ag/againfo/resources/documents/MPGuide/mpguide2.htm
  10. Helfer GA (2015) PhotoMetrix.http://www.photometrix.com.br/
  11. Helfer GA, Magnus VS, Böck FC, Teichmann A, Ferrão MF, Costa ABD (2017) PhotoMetrix: an application for univariate calibration and principal components analysis using colorimetry on mobile devices. J Braz Chem Soc 28:328–335.  https://doi.org/10.5935/0103-5053.20160182
  12. Kim S, Kim KC, Yeom E (2017) Microfluidic method for measuring viscosity using images from smartphone. Opt Lasers Eng.  https://doi.org/10.1016/j.optlaseng.2017.05.016
  13. Le TT, Phan TTQ, Van Camp J, Dewettinck K (2015) 5—milk and dairy polar lipids: occurrence, purification, and nutritional and technological properties. In: Polar lipids. Elsevier, pp 91–143.  https://doi.org/10.1016/B978-1-63067-044-3.50009-1
  14. Levin S, Krishnan S, Rajkumar S, Halery N, Balkunde P (2016) Monitoring of fluoride in water samples using a smartphone. Sci Total Environ 551:101–107.  https://doi.org/10.1016/j.scitotenv.2016.01.156 CrossRefGoogle Scholar
  15. Li F, Bao Y, Wang D, Wang W, Niu L (2016) Smartphones for sensing. Sci Bull 61:190–201.  https://doi.org/10.1007/s11434-015-0954-1 CrossRefGoogle Scholar
  16. Liu L, Zhang D, Zhang Q, Chen X, Xu G, Lu Y, Liu Q (2017) Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection. Biosens Bioelectron 93:94–101.  https://doi.org/10.1016/j.bios.2016.09.084 CrossRefGoogle Scholar
  17. McAuley CM, Singh TK, Haro-Maza JF, Williams R, Buckow R (2016) Microbiological and physicochemical stability of raw, pasteurised or pulsed electric field-treated milk. Innovative Food Sci Emerg Technol 38:365–373.  https://doi.org/10.1016/j.ifset.2016.09.030 CrossRefGoogle Scholar
  18. Murphy SC, Martin NH, Barbano DM, Wiedmann M (2016) Influence of raw milk quality on processed dairy products: how do raw milk quality test results relate to product quality and yield? J Dairy Sci 99:10128–10149.  https://doi.org/10.3168/jds.2016-11172 CrossRefGoogle Scholar
  19. O’Sullivan O, Cotter PD (2017) Chapter 12- Microbiota of raw milk and raw milk cheeses. In: Cheese (fourth edition). Academic Press, San Diego, pp 301–316.  https://doi.org/10.1016/B978-0-12-417012-4.00012-0
  20. Rateni G, Dario P, Cavallo F (2017) Smartphone-based food diagnostic technologies: a review. Sensors 17:1453.  https://doi.org/10.3390/s17061453
  21. Roda A, Calabretta MM, Calabria D, Caliceti C, Cevenini L, Lopreside A, Zangheri M (2017) Smartphone-based biosensors for bioanalytics: a critical review. Comprehensive Analytical Chemistry.  https://doi.org/10.1016/bs.coac.2017.05.007
  22. Sikand V, Tong PS, Walker J (2010) Heat stability of reconstituted, protein-standardized skim milk powders. J Dairy Sci 93:5561–5571.  https://doi.org/10.3168/jds.2010-3128 CrossRefGoogle Scholar
  23. Suñé RW (2010) A Incidência de Amostras de Leite com Reação Positiva ao Teste do Álcool em Diferentes Concentrações na Região da Campanha do Rio Grande do Sul e a Relação com a Acidez Titulável no Acidímetro de Dornic. Bagé, RS. Documentos/Embrapa Pecuária Sul, 113:1982-5390Google Scholar
  24. Xu W, Lu S, Chen Y, Zhao T, Jiang Y, Wang Y, Chen X (2015) Simultaneous color sensing of O2 and pH using a smartphone. Sensors Actuators B Chem 220:326–330.  https://doi.org/10.1016/j.snb.2015.05.088 CrossRefGoogle Scholar
  25. Zhang J, Khan I, Zhang Q, Liu X, Dostalek J, Liedberg B, Wang Y (2018) Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens Bioelectron 99:312–317.  https://doi.org/10.1016/j.bios.2017.07.048 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gilson Augusto Helfer
    • 1
  • Bruna Tischer
    • 2
  • Paula Freitas Filoda
    • 2
  • Alessandra Betina Parckert
    • 3
  • Ronaldo Bastos dos Santos
    • 3
  • Layane Lenardon Vinciguerra
    • 4
  • Marco Flôres Ferrão
    • 4
  • Juliano Smanioto Barin
    • 5
  • Adilson Ben da Costa
    • 2
    • 6
  1. 1.Departamento de ComputaçãoUniversidade de Santa Cruz do SulSanta Cruz do SulBrazil
  2. 2.Programa de Pós-Graduação em Sistema e Processos IndustriaisUniversidade de Santa Cruz do SulSanta Cruz do SulBrazil
  3. 3.Departamento de QuímicaUniversidade de Santa Cruz do SulSanta Cruz do SulBrazil
  4. 4.Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Departamento de Tecnologia e Ciência dos AlimentosUniversidade Federal de Santa MariaSanta MariaBrazil
  6. 6.Programa de Pós-Graduação em Tecnologia AmbientalUniversidade de Santa Cruz do SulSanta Cruz do SulBrazil

Personalised recommendations