Skip to main content

Advertisement

Log in

A Minireview of the Methods for Listeria monocytogenes Detection

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Listeria monocytogenes (LM) is recognized as an opportunistic, foodborne pathogen that leads to the disease listeriosis. Although the incidence of listeriosis is low, listeriosis has a high mortality rate. LM can survive the most common stresses present during food processing steps, and it causes contamination in many food products. Consequently, most countries have endorsed strong restrictions on LM in food products, especially in ready-to-eat products. Conventional culture-based methods are currently the gold standard for testing, but their inefficiency can no longer meet the needs of batch inspection. As a result, a sensitive, fast, and reliable method for LM detection is required. There are many rapid detection methods for LM that are based on different principles, and an overview of the methods of LM detection is addressed here, with an emphasis on chromatographic, immunological, and aptamer-based techniques. Additionally, the prospect of developing novel LM detection methods is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alessandria V, Rantsiou K, Dolci P, Cocolin L (2010) Molecular methods to assess Listeria monocytogenes route of contamination in a dairy processing plant. Int J Food Microbiol 141:S156–S162

    Article  Google Scholar 

  • Alhogail S, Suaifan GA, Zourob M (2016) Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosens Bioelectron 86:1061–1066

    Article  CAS  Google Scholar 

  • Aragon-Alegro LC, Aragon DC, Martinez EZ, Landgraf M, de Melo Franco BDG, Destro MT (2008) Performance of a chromogenic medium for the isolation of Listeria monocytogenes in food. Food Control 19(5):483–486

    Article  CAS  Google Scholar 

  • Beale DJ, Morrison PD, Palombo EA (2014) Detection of Listeria in milk using non-targeted metabolic profiling of Listeria monocytogenes: a proof-of-concept application. Food Control 42:343–346

    Article  CAS  Google Scholar 

  • Bektaş A, Chapela I (2016) Efficiency of a fluorescent, non-extraction LAMP DNA amplification method: toward a field-based specific detection of maize pollen grains. Aerobiologia 32(3):481–488

    Article  Google Scholar 

  • Beumer RR, Te Giffel MC, Anthonie SVR, Cox LJ (1996) The effect of acriflavine and nalidixic acid on the growth of Listeria spp. in enrichment media. Food Microbiol 13:137–148

    Article  CAS  Google Scholar 

  • Bian X, Jing F, Li G, Fan X, Jia C, Zhou H, Jin Q, Zhao J (2015) A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes. Biosens Bioelectron 74:770–777

    Article  CAS  Google Scholar 

  • Borucki MK, Krug MJ, Muraoka WT, Call DR (2003) Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray. Vet Microbiol 92(4):351–362

    Article  CAS  Google Scholar 

  • Borucki MK, Kim SH, Call DR, Smole SC, Pagotto F (2004) Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J Clin Microbiol 42(11):5270–5276

    Article  CAS  Google Scholar 

  • Brasileiro IS, Barbosa M, Igarashi MC, Biscola V, Maffei DF, Landgraf M, de Melo Franco BDG (2016) Use of growth inhibitors for control of Listeria monocytogenes in heat-processed ready-to-eat meat products simulating post-processing contamination. LWT-Food Sci Technol 74:7–13

    Article  CAS  Google Scholar 

  • Burtscher C, Wuertz S (2003) Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters. Appl Environ Microbiol 69(8):4618–4627

    Article  CAS  Google Scholar 

  • Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242

    Article  CAS  Google Scholar 

  • Chen Q, Lin J, Gan C, Wang Y, Wang D, Xiong Y, Lai W, Li Y, Wang M (2015) A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosens Bioelectron 74:504–511

    Article  CAS  Google Scholar 

  • Cheng C, Peng Y, Bai J, Zhang X, Liu Y, Fan X, Ning B, Gao Z (2014) Rapid detection of Listeria monocytogenes in milk by self-assembled electrochemical immunosensor. Sensors Actuators B Chem 190:900–906

    Article  CAS  Google Scholar 

  • Cho IH, Irudayaraj J (2013a) In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. Int J Food Microbiol 164(1):70–75

    Article  CAS  Google Scholar 

  • Cho IH, Irudayaraj J (2013b) Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes. Anal Bioanal Chem 405(10):3313–3319

    Article  CAS  Google Scholar 

  • Churchill RL, Lee H, Hall JC (2006) Detection of Listeria monocytogenes and the toxin listeriolysin O in food. J Microbiol Methods 64(2):141–170

    Article  CAS  Google Scholar 

  • Cornu M, Kalmokoff M, Flandrois JP (2002) Modelling the competitive growth of Listeria monocytogenes and Listeria innocua in enrichment broths. Int J Food Microbiol 73(2):261–274

    Article  Google Scholar 

  • Crowther JR (2001) The ELISA guide book. Humana Press Torowa, New Jersey

    Google Scholar 

  • Cruz CD, Fletcher GC (2011) Prevalence and biofilm-forming ability of Listeria monocytogenes in New Zealand mussel (Perna canaliculus) processing plants. Food Microbiol 28(7):1387–1393

    Article  Google Scholar 

  • Duan N, Ding X, He L, Wu S, Wei Y, Wang Z (2013) Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33(1):239–243

    Article  CAS  Google Scholar 

  • Engelhardt T, Ágoston R, Belák Á, Mohácsi-Farkas C, Kiskó G (2016) The suitability of the ISO 11290-1 method for the detection of Listeria monocytogenes. LWT-Food Sci Technol 71:213–220

    Article  CAS  Google Scholar 

  • Feng K, Hu W, Jiang A, Xu Y, Zou Y, Yang L, Wang X (2016) A dual filtration-based multiplex PCR method for simultaneous detection of viable Escherichia coli O157: H7, Listeria monocytogenes, and Staphylococcus aureus on fresh-cut cantaloupe. PLoS One 11(12):e0166874

    Article  CAS  Google Scholar 

  • Forghani F, Wei S, Oh DH (2016) A rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in food. J Food Prot 79(5):810–815

    Article  CAS  Google Scholar 

  • Hamula CL, Zhang H, Li F, Wang Z, Le XC, Li XF (2011) Selection and analytical applications of aptamers binding microbial pathogens. TrAC Trends Anal Chem 30(10):1587–1597

    Article  CAS  Google Scholar 

  • Hayes PS, Graves LM, Swaminathan B, Ajello GW, Malcolm GB, Weaver RE, Ransom R, Deaver K, Plikaytis BD, Schuchat A, Wenger JD, Pinner RW, Broome CV, The Listeria Study Group (1992) Comparison of three selective enrichment methods for the isolation of Listeria monocytogenes from naturally contaminated foods. J Food Prot 55(12):952–959

    Article  Google Scholar 

  • Hegde V, Leon-Velarde CG, Stam CM, Jaykus LA, Odumeru JA (2007) Evaluation of BBL CHROMagar Listeria agar for the isolation and identification of Listeria monocytogenes from food and environmental samples. J Microbiol Methods 68(1):82–87

    Article  CAS  Google Scholar 

  • Iannetti L, Acciari VA, Antoci S, Addante N, Bardasi L, Bilei S, Calistri P, Cito F, Cogoni P, D'Aurelio R, Decastelli L, Iannetti S, Iannitto G, Marino AM, Muliari R, Neri D, Perilli M, Pomilio F, Prencipe V, Proroga Y, Santarelli GA, Sericola M, Torresi M, Migliorati G (2016) Listeria monocytogenes in ready-to-eat foods in Italy: prevalence of contamination at retail and characterisation of strains from meat products and cheese. Food Control 68:55–61

    Article  CAS  Google Scholar 

  • Jadhav S, Bhave M, Palombo EA (2012) Methods used for the detection and subtyping of Listeria monocytogenes. J Microbiol Methods 88(3):327–341

    Article  CAS  Google Scholar 

  • Jiang W, Beloglazova N, Luo P, Guo P, Lin G, Wang X (2017) A dual-color quantum dots encoded frit-based immunoassay for visual detection of aflatoxin M1 and pirlimycin residues in milk. J Agric Food Chem 65(8):1822–1828

    Article  CAS  Google Scholar 

  • Johansson T (1998) Enhanced detection and enumeration of Listeria monocytogenes from foodstuffs and food-processing environments. Int J Food Microbiol 40(1):77–85

    Article  CAS  Google Scholar 

  • Jung YS, Frank JF, Brackett RE, Chen J (2003) Polymerase chain reaction detection of Listeria monocytogenes on frankfurters using oligonucleotide primers targeting the genes encoding internalin AB. J Food Prot 66(2):237–241

    Article  CAS  Google Scholar 

  • Juven BJ, Barefoot SF, Pierson MD, Mccaskill LH, Smith B (1998) Growth and survival of Listeria monocytogenes in vacuum-packaged ground beef inoculated with Lactobacillus alimentarius FloraCarn L-2. J Food Prot 61(5):551–556

    Article  CAS  Google Scholar 

  • Kapetanakou AE, Karyotis D, Skandamis PN (2016) Control of Listeria monocytogenes by applying ethanol-based antimicrobial edible films on ham slices and microwave-reheated frankfurters. Food Microbiol 54:80–90

    Article  CAS  Google Scholar 

  • Kaynak A, Şakalar E (2016) A rapid and cost-efficient technique for simultaneous/duplex detection of Listeria monocytogenes and Escherichia coli O157: H7 using real time PCR. J Food Saf 36(3):375–382

    Article  CAS  Google Scholar 

  • Kim HJ, Cho JC (2008) Rapid and sensitive detection of Listeria monocytogenes using a PCR-enzyme linked immunosorbent assay. J Microbiol Biotechnol 18(11):1858–1861

    CAS  Google Scholar 

  • Kim SH, Park MK, Kim JY, Chuong PD, Lee YS, Yoon BS, Hwang KK, Lim YK (2005) Development of a sandwich ELISA for the detection of Listeria spp. using specific flagella antibodies. J Vet Sci 6(1):41–46

    Google Scholar 

  • Kim HS, Kim YJ, Chon JW, Kim DH, Yim JH, Kim H, Seo KH (2017) Two-stage label-free aptasensing platform for rapid detection of Cronobacter sakazakii in powdered infant formula. Sensors Actuators B Chem 239:94–99

    Article  CAS  Google Scholar 

  • Koo K, Jaykus LA (2003) Detection of Listeria monocytogenes from a model food by fluorescence resonance energy transfer-based PCR with an asymmetric fluorogenic probe set. Appl Environ Microbiol 69(2):1082–1088

    Article  CAS  Google Scholar 

  • Law JWF, Ab Mutalib NS, Chan KG, Lee LH (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770

    Article  Google Scholar 

  • Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, Mutalib NS, Lee LH (2016) Insights into bacteriophage application in controlling Vibrio species. Front Microbiol. doi:10.3389/fmicb.2016.01114

  • Li X, Lv P, Wang L, Guo A, Ma M, Qi X (2014) Application of high resolution pyrolysis gas chromatography/mass spectrometry (HRPGC/MS) for detecting Listeria monocytogenes. J Chromatogr B 971:107–111

    Article  CAS  Google Scholar 

  • Lianou A, Sofos JN (2007) A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments. J Food Prot 70(9):2172–2198

    Article  Google Scholar 

  • Liu D (2006) Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol 55(6):645–659

    Article  Google Scholar 

  • Liu F, Zhang C (2015) A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sensors Actuators B Chem 209:399–406

    Article  CAS  Google Scholar 

  • Liu G, Lin YY, Wang J, Wu H, Wai CM, Lin Y (2007) Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal Chem 79(20):7644–7653

    Article  CAS  Google Scholar 

  • Liu GQ, Lian YQ, Chao G, Yu XF, Ming Z, Kai Z, Chen XJ, Yi Y (2014) In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. J Integr Agric 13(5):1121–1129

    Article  CAS  Google Scholar 

  • Liu Z, Zhu J, Xia X, Wang L, Yang C, Li X (2015) Development of a loop-mediated isothermal amplification assay based on lmo0460 sequence for detection of Listeria monocytogenes. J Food Saf 35(3):362–369

    Article  CAS  Google Scholar 

  • Liu AP, Xiong Q, Shen L, Li WL, Zeng ZH, Li C, Liu SL, Liu YT, Han GQ (2017) A sandwich-type ELISA for the detection of Listeria monocytogenes using the well-oriented single chain Fv antibody fragment. Food Control 79:156–161

    Article  CAS  Google Scholar 

  • Loncarevic S, Økland M, Sehic E, Norli H, Johansson T (2008) Validation of NMKL method no. 136-Listeria monocytogenes, detection and enumeration in foods and feed. Int J Food Microbiol 124(2):154–163

    Article  CAS  Google Scholar 

  • Luan Y, Chen J, Li C, Xie G, Fu H, Ma Z, Lu A (2015) Highly sensitive colorimetric detection of ochratoxin A by a label-free aptamer and gold nanoparticles. Toxins 7(12):5377–5385

    Article  CAS  Google Scholar 

  • Magalhaes R, Ferreira V, Brandão TRS, Palencia RC, Almeida G, Teixeira P (2016) Persistent and non-persistent strains of Listeria monocytogenes: a focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers. Food Microbiol 57:103–108

    Article  CAS  Google Scholar 

  • Marian M, Aminah SS, Zuraini M, Son R, Maimunah M, Lee H, Wong W, Elexson N (2012) MPN-PCR detection and antimicrobial resistance of Listeria monocytogenes isolated from raw and ready-to-eat foods in Malaysia. Food Control 28(2):309–314

    Article  CAS  Google Scholar 

  • Mcclure PJ, Roberts TA, Oguru PO (1989) Comparison of the effects of sodium chloride, pH and temperature on the growth of Listeria monocytogenes on gradient plates and in liquid medium. Lett Appl Microbiol 9(3):95–99

    Article  CAS  Google Scholar 

  • Moon JH, Kim G, Park SB, Lim J, Mo C (2014) The importance of FACS analysis in the development of aptamers specific to pathogens. J Biosyst Eng 39(2):111–114

    Article  Google Scholar 

  • Mpofu A, Linnemann AR, Nout MJ, Zwietering MH, Smid EJ, den Besten HM (2016) Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba. Int J Food Microbiol 217:42–48

    Article  CAS  Google Scholar 

  • Nanduri V, Bhunia AK, Tu SI, Paoli GC, Brewster JD (2007) SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody. Biosens Bioelectron 23(2):248–252

    Article  CAS  Google Scholar 

  • Nightingale K, Windham K, Wiedmann M (2005) Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol 187(16):5537–5551

    Article  CAS  Google Scholar 

  • Notomi T, Mori Y, Tomita N, Kanda H (2015) Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol 53(1):1–5

    Article  CAS  Google Scholar 

  • O’Connor L, O’leary M, Leonard N, Godinho M, O’Reilly C, Egan J, O’Mahony R (2010) The characterization of Listeria spp. isolated from food products and the food-processing environment. Lett Appl Microbiol 51(5):490–498

    Article  Google Scholar 

  • Ohk S, Koo O, Sen T, Yamamoto C, Bhunia A (2010) Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109(3):808–817

    Article  CAS  Google Scholar 

  • Oladepo D, Candlish A, Stimson W (1992) Detection of Listeria monocytogenes using polyclonal antibody. Lett Appl Microbiol 14(2):26–29

    Article  Google Scholar 

  • Orsi RH, Wiedmann M (2016) Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 100(12):5273–5287

    Article  CAS  Google Scholar 

  • Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12(1):1–15

    Article  Google Scholar 

  • Petran RL, Zottola EA (1989) A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. J Food Sci 54(2):458–460

    Article  CAS  Google Scholar 

  • Phan-Thanh L, Montagne A (1998) Physiological and biochemical aspects of the acid survival of Listeria monocytogenes. J Gen Appl Microbiol 44(3):183–191

    Article  CAS  Google Scholar 

  • Ponniah J, Robin T, Paie MS, Radu S, Mohamad Ghazali F, Cheah YK (2010) Detection of Listeria monocytogenes in foods. Int Food Res J 17(1):1–11

    Google Scholar 

  • Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Jahne M, Rogers S, Suni II (2013) Detection of Listeria monocytogenes by electrochemical impedance spectroscopy. Electroanalysis 25(9):2231–2237

    Article  CAS  Google Scholar 

  • Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54

    Google Scholar 

  • Ronkainen NJ, Halsall HB, Heineman W (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  • Schubert WD, Urbanke C, Ziehm T, Beier V, Machner MP, Domann E, Wehland J, Chakraborty T, Heinz DW (2002) Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111(6):825–836

    Article  CAS  Google Scholar 

  • Shi L, Wu F, Wen Y, Zhao F, Xiang J, Ma L (2015) A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal Bioanal Chem 407(2):529–535

    Article  CAS  Google Scholar 

  • Shim W, Choi J, Kim J, Yang Z, Lee K, Kim M, Ha S, Kim K, Kim K, Kim C (2007) Production of monoclonal antibody against Listeria monocytogenes and its application to immunochromatography strip test. J Microbiol Biotechnol 17(7):1152

    CAS  Google Scholar 

  • Shim WB, Choi JG, Kim JY, Yang ZY, Lee KH, Kim MG, Ha SD, Kim KS, Kim KY, Kim CH (2008) Enhanced rapidity for qualitative detection of Listeria monocytogenes using an enzyme-linked immunosorbent assay and immunochromatography strip test combined with immunomagnetic bead separation. J Food Prot 71(4):781–789

    Article  CAS  Google Scholar 

  • Sim JH, Kwak YH, Choi CH, Paek SH, Park SS, Seo S (2012) A birefringent waveguide biosensor platform for label-free live cell detection of Listeria monocytogenes. Sensors Actuators B Chem 173:752–759

    Article  CAS  Google Scholar 

  • Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13(2):1763–1786

    Article  CAS  Google Scholar 

  • Snapir YM, Vaisbein E, Nassar F (2006) Low virulence but potentially fatal outcome-Listeria ivanovii. Eur J Intern Med 17(4):286–287

    Article  Google Scholar 

  • Spadafora ND, Paramithiotis S, Drosinos EH, Cammarisano L, Rogers HJ, Müller CT (2016) Detection of Listeria monocytogenes in cut melon fruit using analysis of volatile organic compounds. Food Microbiol 54:52–59

    Article  CAS  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    Article  CAS  Google Scholar 

  • Suh SH, Dwivedi HP, Choi SJ, Jaykus LA (2014) Selection and characterization of DNA aptamers specific for Listeria species. Anal Biochem 459:39–45

    Article  CAS  Google Scholar 

  • Tang MJ, Zhou S, Zhang XY, Pu JH, Ge QL, Tang XJ, Gao YS (2011) Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification. Curr Microbiol 63(6):511

    Article  CAS  Google Scholar 

  • Taylor C, Lough F, Stanforth SP, Schwalbe EC, Fowlis IA, Dean JR (2017) Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace–multi-capillary column–gas chromatography–ion mobility spectrometry (SHS–MCC–GC–IMS). Anal Bioanal Chem. doi:10.1007/s00216-017-0375-x

  • Urushibata Y, Itoh K, Ohshima M, Seto Y (2010) Generation of Fab fragment-like molecular recognition proteins against staphylococcal enterotoxin B by phage display technology. Clin Vaccine Immunol 17(11):1708–1717

    Article  CAS  Google Scholar 

  • Välimaa AL, Tilsala-Timisjärvi A, Virtanen E (2015) Rapid detection and identification methods for Listeria monocytogenes in the food chain—a review. Food Control 55:103–114

    Article  CAS  Google Scholar 

  • Van Coillie E, Werbrouck H, Heyndrickx M, Herman L, Rijpens N (2004) Prevalence and typing of Listeria monocytogenes in ready-to-eat food products on the Belgian market. J Food Prot 67(11):2480–2487

    Article  Google Scholar 

  • Walker SJ, Archer P, Banks JG (1990) Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol 68(2):157–162

    Article  CAS  Google Scholar 

  • Wang H, Zhang C, Xing D (2011) Simultaneous detection of Salmonella enterica, Escherichia coli O157: H7, and Listeria monocytogenes using oscillatory-flow multiplex PCR. Microchim Acta 173(3–4):503–512

    Article  CAS  Google Scholar 

  • Wang L, Li Y, Chu J, Xu Z, Zhong Q (2012) Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains. Mol Biol Rep 39(1):445–449

    Article  CAS  Google Scholar 

  • Wang D, Chen Q, Huo H, Bai S, Cai G, Lai W, Lin J (2017a) Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles. Food Control 73:555–561

    Article  CAS  Google Scholar 

  • Wang W, Liu L, Song S, Xu L, Zhu J, Kuang H (2017b) Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. Food Agric Immunol 28(2):274–287

    Article  CAS  Google Scholar 

  • Warburton DW, Farber JM, Armstrong A, Caldeira R, Hunt T, Messier S, Plante R, Tiwari NP, Vinet J (1991) A comparative study of the ‘FDA’ and ‘USDA’ methods for the detection of Listeria monocytogenes in foods. Int J Food Microbiol 13(2):105–117

    Article  CAS  Google Scholar 

  • Whittaker P (2012) Evaluating the use of fatty acid profiles to differentiate human pathogenic and nonpathogenic Listeria species. J AOAC Int 95(5):1457–1459

    Article  CAS  Google Scholar 

  • Wong HS, Maker GL, Trengove RD, O'Handley RM (2015) Gas chromatography-mass spectrometry-based metabolite profiling of Salmonella enterica serovar typhimurium differentiates between biofilm and planktonic phenotypes. Appl Environ Microbiol 81(8):2660–2666

    Article  CAS  Google Scholar 

  • Wu S, Duan N, Gu H, Hao L, Ye H, Gong W, Wang Z (2016) A review of the methods for detection of Staphylococcus aureus enterotoxins. Toxins 8(7):176

    Article  CAS  Google Scholar 

  • Xu Y, Cui L, Tian C, Li S, Cao J, Liu Z, Zhang G (2012) A multiplex polymerase chain reaction coupled with high-performance liquid chromatography assay for simultaneous detection of six foodborne pathogens. Food Control 25(2):778–783

    Article  CAS  Google Scholar 

  • Yang X, Zhou X, Zhu M, Xing D (2017) Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Biosens Bioelectron 91:238–245

    Article  CAS  Google Scholar 

  • Ye K, Zhang Q, Jiang Y, Xu X, Cao J, Zhou G (2012) Rapid detection of viable Listeria monocytogenes in chilled pork by real-time reverse-transcriptase PCR. Food Control 25(1):117–124

    Article  CAS  Google Scholar 

  • Yu KY, Noh Y, Chung M, Park HJ, Lee N, Youn M, Jung BY, Youn BS (2004) Use of monoclonal antibodies that recognize p60 for identification of Listeria monocytogenes. Clin Diagn Lab Immunol 11(3):446–451

    CAS  Google Scholar 

  • Zhang L, Huang R, Liu W, Liu H, Zhou X, Xing D (2016) Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 86:1–7

    Article  CAS  Google Scholar 

  • Zhao Y, Li Y, Jiang K, Wang J, White WL, Yang S, Lu J (2017) Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 71:110–116

    Article  CAS  Google Scholar 

  • Zhou X, Jiao X (2005) Polymerase chain reaction detection of Listeria monocytogenes using oligonucleotide primers targeting actA gene. Food Control 16(2):125–130

    Article  CAS  Google Scholar 

  • Zhou H, Gao Z, Luo G, Han L, Sun S, Wang H (2010) Determination of Listeria monocytogenes in milk samples by signal amplification quartz crystal microbalance sensor. Anal Lett 43(2):312–322

    Article  CAS  Google Scholar 

  • Zunabovic M, Domig KJ, Kneifel W (2011) Practical relevance of methodologies for detecting and tracing of Listeria monocytogenes in ready-to-eat foods and manufacture environments—a review. LWT-Food Sci Technol 44(2):351–362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiping Liu or Xiaohong Wang.

Ethics declarations

Funding

This study was funded by the fundamental research funds for the central universities (52209-814012). The support of Sichuan Agricultural University was acknowledged.

Conflict of Interest

Aiping Liu declares that he has no conflict of interest. Li Shen declares that she has no conflict of interest. Zhenghai Zeng declares that he has no conflict of interest. Min Sun declares that she has no conflict of interest. Yuntao Liu declares that he has no conflict of interest. Shuliang Liu declares that he has no conflict of interest. Cheng Li declares that he has no conflict of interest. Xiaohong Wang declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Shen, L., Zeng, Z. et al. A Minireview of the Methods for Listeria monocytogenes Detection. Food Anal. Methods 11, 215–223 (2018). https://doi.org/10.1007/s12161-017-0991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0991-2

Keywords

Navigation