Food Analytical Methods

, Volume 10, Issue 6, pp 1972–1981 | Cite as

Recombinase Polymerase Amplification-Based Assay for Rapid Detection of Listeria monocytogenes in Food Samples

  • Weifang Gao
  • Hailong Huang
  • Yan Zhang
  • Peng Zhu
  • Xiaojun Yan
  • Jianzhong Fan
  • Xianfeng Chen
Article

Abstract

Listeria monocytogenes (L. monocytogenes) is a Gram-positive microbe and is reported to be potentially pathogenic for both humans and animals, exhibiting a high mortality rate of up to 30%. The invention of a fast and sensitive method of point-of-care testing (POCT) is of great significance for the field of food safety of the rapid detection of harmful microbes and prevention of food contaminated by such microbes from reaching the markets. A novel isothermal molecular amplification technique, recombinase polymerase amplification (RPA), has been used to detect L. monocytogenes in food combined with a highly sensitive end determining method, lateral flow dipstick (LFD) technology. RPA-LFD was implemented at 37 °C, and amplification only took 20 min. By optimizing the primers and probes, the system had no cross-reaction with seven other pathogens, and it was proven to have a 100 times higher sensitivity (1360 cfu/mL) than a real-time PCR for L. monocytogenes testing. Also, RPA-LFD was applied without complex or expensive equipment, only a thermostatic heater such as the Thermomixer Comfort was required. Thus, RPA-LFD was found to be a solution for POCT for L. monocytogenes, especially for low-resource locations with little available laboratory equipment.

Keywords

Recombinase polymerase amplification Lateral flow dipsticks Pathogen Point of care testing Food safety 

Notes

Acknowledgements

We would like to acknowledge the Ningbo Academy of Inspection and Quarantine for providing the bacterial strain in inactivation to extract genomic DNA for this study and allowing us to finish the spiking assay in the laboratory there. And the assistance and guidance of the staff there and the professionals at Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases were also appreciated. We thank LetPub (www.letpub.com) for their linguistic assistance during the preparation of this manuscript.

Author Contributions

Weifang Gao and Peng Zhu contributed equally to this work.

Compliance with Ethical Standards

Funding

This study was funded by Ningbo Innovation Team (2015C110018), Ningbo Marine Algae Biotechnology Team (2011B81007), K.C. Wang Magna Fund in Ningbo University (SS), and Scientific Research Foundation of Graduate School of Ningbo University (G16091).

Conflict of Interest

Weifang Gao declares that he has no conflict of interest. Peng Zhu declares that she has no conflict of interest. Hailong Huang declares that he has no conflict of interest. Xiaojun Yan declares that he has no conflict of interest. Jianzhong Fan declares that he has no conflict of interest. Xianfeng Chen declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Allerberger F, Wagner M (2010) Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 16:16–23. doi: 10.1111/j.1469-0691.2009.03109.x CrossRefGoogle Scholar
  2. Batz MB, Hoffmann SA, Morris JG (2011) Ranking the risks: the 10 pathogen-food combinations with the greatest burden on public health. Emerging Pathogens Institute, University of FloridaGoogle Scholar
  3. Boyle DS, Lehman DA, Lillis L, Peterson D, Singhal M, Armes N, Parker M, Piepenburg O, Overbaugh J (2013) Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification. MBio 4:e00135–e00113. doi: 10.1128/mBio.00135-13 CrossRefGoogle Scholar
  4. Boyle DS, McNerney R, Teng LH, Leader BT, Perez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg O, Forrest MS (2014) Rapid detection of mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One 9:e103091. doi: 10.1371/journal.pone.0103091 CrossRefGoogle Scholar
  5. Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92. doi: 10.1038/350091a0 CrossRefGoogle Scholar
  6. Cordray MS, Richards-Kortum RR (2015) A paper and plastic device for the combined isothermal amplification and lateral flow detection of plasmodium DNA. Malar J 14:472. doi: 10.1186/s12936-015-0995-6 CrossRefGoogle Scholar
  7. Crannell ZA, Castellanos-Gonzalez A, Irani A, Rohrman B, White AC, Richards-Kortum R (2014a) Nucleic acid test to diagnose cryptosporidiosis lab assessment in animal and patient specimens. Anal Chem 86:2565–2571. doi: 10.1021/ac403750z CrossRefGoogle Scholar
  8. Crannell ZA, Rohrman B, Richards-Kortum R (2014b) Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 9:e112146. doi: 10.1371/journal.pone.0112146 CrossRefGoogle Scholar
  9. Crannell ZA, Rohrman B, Richards-Kortum R (2014c) Quantification of HIV-1 DNA using real-time recombinase polymerase amplification. Anal Chem 86:5615–5619. doi: 10.1021/ac5011298 CrossRefGoogle Scholar
  10. Crannell ZA, Cabada MM, Castellanos-Gonzalez A, Irani A, White AC, Richards-Kortum R (2015) Recombinase polymerase amplification-based assay to diagnose Giardia in stool samples. AmJTrop Med Hyg 92:583–587. doi: 10.4269/ajtmh.14-0593 CrossRefGoogle Scholar
  11. Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486. doi: 10.1039/C2LC40100B CrossRefGoogle Scholar
  12. Deisingh AK, Thompson M (2002) Detection of infectious and toxigenic bacteria. Analyst 127:567–581. doi: 10.1039/B109895K CrossRefGoogle Scholar
  13. Donnelly CW (2001) Listeria monocytogenes: a continuing challenge. Nutr Rev 59:183–194. doi: 10.1111/j.1753-4887.2001.tb07011.x 183-194 CrossRefGoogle Scholar
  14. Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert FT, Weidmann M (2013) Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol 51:1110–1117. doi: 10.1128/JCM.02704-12 CrossRefGoogle Scholar
  15. Hill-Cawthorne GA, Hudson LO, El Ghany MF, Piepenburg O, Nair M, Dodgson A, Forrest MS, Clark TG, Pain A (2014) Recombinations in staphylococcal cassette chromosome mec elements compromise the molecular detection of methicillin resistance in Staphylococcus aureus. PLoS One 9:e101419. doi: 10.1371/journal.pone.0101419 CrossRefGoogle Scholar
  16. Huang X, Zhao R, Zhang Y, Zheng J, Cai Q (2015) Detection of Listeria monocytogenes in food using multiplex real-time PCR targeting the toxic genes. Journal of Food Safety and Quality 6:3453–3459Google Scholar
  17. Jaroenram W, Owens L (2014) Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome. J Virol Methods 208:144–151. doi: 10.1016/j.jviromet.2014.08.006 CrossRefGoogle Scholar
  18. Jay JM, Loessner MJ, Golden DA (2008) Modern food microbiology. Springer Science & Business Media, New YorkGoogle Scholar
  19. Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis strategies and applications. Bioanalysis 3:227–239. doi: 10.4155/bio.10.172 CrossRefGoogle Scholar
  20. Kim TH, Park J, Kim CJ, Cho YK (2014) Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem 86:3841–3848. doi: 10.1021/ac403971h CrossRefGoogle Scholar
  21. Kramarenko T, Roasto M, Meremäe K, Kuningas M, Põltsama P, Elias T (2013) Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 30(1):24–29. doi: 10.1016/j.foodcont.2012.06.047 CrossRefGoogle Scholar
  22. Krõlov K, Frolova J, Tudoran O, Suhorutsenko J, Lehto T, Sibul H, Mäger I, Laanpere M, Tulp I, Langel Ü (2014) Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagn 16:127–135. doi: 10.1016/j.jmoldx.2013.08.003 CrossRefGoogle Scholar
  23. Lambertz ST, Ivarsson S, Lopez-Valladares G, Sidstedt M, Lindqvist R (2013) Subtyping of Listeria monocytogenes isolates recovered from retail ready-to-eat foods, processing plants and listeriosis patients in Sweden 2010. Int J Food Microbiol 166:186–192. doi: 10.1016/j.ijfoodmicro.2013.06.008 CrossRefGoogle Scholar
  24. Liljander A, Yu M, O'Brien E, Heller M, Nepper JF, Weibel DB, Gluecks I, Younan M, Frey J, Falquet L (2015) Field-applicable recombinase polymerase amplification assay for rapid detection of Mycoplasma capricolum subsp. capripneumoniae. J Clin Microbiol 53:2810–2815. doi: 10.1128/JCM.00623-15 CrossRefGoogle Scholar
  25. Lillis L, Lehman D, Singhal MC, Cantera J, Singleton J, Labarre P, Toyama A, Piepenburg O, Parker M, Wood R, Overbaugh J, Boyle DS (2014) Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS One 9(9):e108189. doi: 10.1371/journal.pone.0108189 CrossRefGoogle Scholar
  26. Liu H, Lu L, Pan Y, Sun X, Hwang C, Zhao Y, Wu VCH (2015) Rapid detection and differentiation of Listeria monocytogenes and Listeria species in deli meats by a new multiplex PCR method. Food Control 52:78–84. doi: 10.1016/j.foodcont.2014.12.017 CrossRefGoogle Scholar
  27. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19:225–232. doi: 10.1038/898 CrossRefGoogle Scholar
  28. Lomonaco S, Verghese B, Gerner-Smidt P, Tarr C, Gladney L, Joseph L, Katz L, Turnsek M, Frace M, Chen Y (2013) Novel epidemic clones of Listeria monocytogenes, United States, 2011. Emerg Infect Dis 19:147–150. doi: 10.3201/eid1901.121167 CrossRefGoogle Scholar
  29. Muhterem-Uyar M, Dalmasso M, Bolocan AS, Hernandez M, Kapetanakou AE, Kuchta T, Manios SG, Melero B, Minarovičová J, Nicolau AI (2015) Environmental sampling for Listeria monocytogenes control in food processing facilities reveals three contamination scenarios. Food Control 51:94–107. doi: 10.1016/j.foodcont.2014.10.042 CrossRefGoogle Scholar
  30. Murinda SE, Ibekwe AM, Zulkaffly S, Cruz A, Park S, Razak N, Paudzai FM, Ab Samad L, Baquir K, Muthaiyah K, Santiago B, Rusli A, Sean B (2014) Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplification. Foodborne Pathog Dis 11:529–536. doi: 10.1089/fpd.2013.1663 CrossRefGoogle Scholar
  31. Nitecki S, Teape N, Carney B, Slater J, Brück W (2015) A duplex qPCR for the simultaneous detection of Escherichia coli O157: H7 and Listeria monocytogenes using LNA probes. Lett Appl Microbiol 61:20–27. doi: 10.1111/lam.12427 CrossRefGoogle Scholar
  32. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63. doi: 10.1093/nar/28.12.e63 CrossRefGoogle Scholar
  33. O’Neil HS, Marquis H (2006) Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 74:6675–6681. doi: 10.1128/IAI.00886-06 CrossRefGoogle Scholar
  34. Pattarawarapan M, Nangola S, Cressey TR, Tayapiwatana C (2007) Development of a one-step immunochromatographic strip test for the rapid detection of nevirapine (NVP), a commonly used antiretroviral drug for the treatment of HIV/AIDS. Talanta 71:462–470. doi: 10.1016/j.talanta.2006.05.059 CrossRefGoogle Scholar
  35. Paul M, Baranzoni GM, Albonetti S, Brewster JD (2015) Direct, quantitative detection of Listeria monocytogenes in fresh raw whole milk by qPCR. Int Dairy J 41:46–49. doi: 10.1016/j.idairyj.2014.09.008 CrossRefGoogle Scholar
  36. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:1115–1121. doi: 10.1371/journal.pbio.0040204 CrossRefGoogle Scholar
  37. Prazak AM, Murano EA, Mercado I, Acuff GR (2002) Antimicrobial resistance of Listeria monocytogenes isolated from various cabbage farms and packing sheds in Texas. J Food Prot 65:1796–1799CrossRefGoogle Scholar
  38. Raoult D, Chao CC, Belinskaya T, Zhang Z, Ching WM (2015) Development of recombinase polymerase amplification assays for detection of Orientia tsutsugamushi or Rickettsia typhi. PLoS Negl Trop Dis 9:e0003884. doi: 10.1371/journal.pntd.0003884 CrossRefGoogle Scholar
  39. Rodríguez-Lazaro D, Hernandez M (2014) Listeria: detection by classical cultural techniques. Encyclopedia of Food Microbiology 2:470–476CrossRefGoogle Scholar
  40. Rodriguez-Lazaro D, Gonzalez-García P, Gattuso A, Gianfranceschi MV, Hernandez M (2014) Reducing time in the analysis of Listeria monocytogenes in meat, dairy and vegetable products. Int J Food Microbiol 184:98–105. doi: 10.1016/j.ijfoodmicro.2014.03.006 CrossRefGoogle Scholar
  41. Rohrman BA, Leautaud V, Molyneux E, Richards-Kortum RR (2012) A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One 7:e45611. doi: 10.1371/journal.pone.0045611 CrossRefGoogle Scholar
  42. Russo P, Botticella G, Capozzi V, Massa S, Spano G, Beneduce L (2014) A fast, reliable, and sensitive method for detection and quantification of Listeria monocytogenes and Escherichia coli O157: H7 in ready-to-eat fresh-cut products by MPN-qPCR. BioMed research international 2014. doi: 10.1155/2014/608296 Google Scholar
  43. Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieira A (2014) Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 811:81–87. doi: 10.1016/j.aca.2013.12.017 CrossRefGoogle Scholar
  44. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17. doi: 10.3201/eid1701.P11101
  45. Schuchat A, Swaminathan B, Broome CV (1991) Epidemiology of human listeriosis. Clin Microbiol Rev 4:169–183. doi: 10.1128/CMR.4.2.169 CrossRefGoogle Scholar
  46. Scotter SL, Langton S, Lombard B, Lahellec C, Schulten S, Nagelkerke N, in’t Veld PH, Rollier P (2001) Validation of ISO method 11290: part 2. Enumeration of Listeria monocytogenes in foods. Int J Food Microbiol 70:121–129. doi: 10.1016/S0168-1605(01)00530-X CrossRefGoogle Scholar
  47. Shiu CM, Wang JJ, FY Y (2010) Sensitive enzyme-linked immunosorbent assay and rapid one-step immunochromatographic strip for fumonisin B1 in grain-based food and feed samples. J Sci Food Agric 90:1020–1026. doi: 10.1002/jsfa.3911 Google Scholar
  48. Spadafora ND, Paramithiotis S, Drosinos EH, Cammarisano L, Rogers HJ, Müller CT (2016) Detection of Listeria monocytogenes in cut melon fruit using analysis of volatile organic compounds. Food Microbiol 54:52–59. doi: 10.1016/j.fm.2015.10.017 CrossRefGoogle Scholar
  49. Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers I, Sermon K (2007) Whole-genome multiple displacement amplification from single cells. Nat Protoc 1:1965–1970. doi: 10.1038/nprot.2006.326 CrossRefGoogle Scholar
  50. Tao T, Chen Q, Bie X, Lu F, Lu Z (2015) Mining of novel species-specific primers for PCR detection of Listeria monocytogenes based on genomic approach. World J Microbiol Biotechnol 31:1955–1966. doi: 10.1007/s11274-015-1942-y CrossRefGoogle Scholar
  51. Todd E, Notermans S (2011) Surveillance of listeriosis and its causative pathogen, Listeria monocytogenes. Food Control 22:1484–1490. doi: 10.1016/j.foodcont.2010.07.021 CrossRefGoogle Scholar
  52. Uyttendaele M, De Troy P, Debevere J (1999) Incidence of Listeria monocytogenes in different types of meat products on the Belgian retail market. Int J Food Microbiol 53:75–80. doi: 10.1016/S0168-1605(99)00155-5 CrossRefGoogle Scholar
  53. Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640. doi: 10.1128/CMR.14.3.584-640.2001 CrossRefGoogle Scholar
  54. Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800. doi: 10.1038/sj.embor.7400200 CrossRefGoogle Scholar
  55. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20:1691–1696. doi: 10.1093/nar/20.7.1691 CrossRefGoogle Scholar
  56. Wallace M (2015) Validation of a real-time PCR assay for detecting Listeria monocytogenes from foods and environmental surfaces. In: 2015 Annual Meeting: International Association for Food Protection. Oregon Convention Center, Portland 2015.7.25–2015.7.28, p 2–50. https://iafp.confex.com/iafp/2015/webprogram/Paper9599.html
  57. Watson R (2009) Listeriosis remains a cause for concern in Europe. BMJ 338:b319. doi: 10.1136/bmj.b319 CrossRefGoogle Scholar
  58. Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, McPhee JE, Brown P, Weston A, Cardy DLN (2001) Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res 29:e54. doi: 10.1093/nar/29.11.e54 CrossRefGoogle Scholar
  59. Wulff G, Gram L, Ahrens P, Vogel BF (2006) One group of genetically similar Listeria monocytogenes strains frequently dominates and persists in several fish slaughter-and smokehouses. Appl Environ Microbiol 72:4313–4322. doi: 10.1128/AEM.02288-05 CrossRefGoogle Scholar
  60. Ye L, Li Y, Zhao J, Zhang Z, Meng H, Yan H, Miyoshi S-i, Shi L (2015) Development of a real-time loop-mediated isothermal amplification assay for the sensitive and rapid detection of Listeria monocytogenes. Lett Appl Microbiol 61:85–90. doi: 10.1111/lam.12429 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Weifang Gao
    • 1
  • Hailong Huang
    • 1
  • Yan Zhang
    • 2
  • Peng Zhu
    • 1
  • Xiaojun Yan
    • 1
  • Jianzhong Fan
    • 3
  • Xianfeng Chen
    • 4
  1. 1.Ningbo UniversityNingboChina
  2. 2.Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
  3. 3.Ningbo Boao Biological Engineering Co., Ltd.NingboChina
  4. 4.Ningbo Academy of Inspection and QuarantineNingboChina

Personalised recommendations