Food Analytical Methods

, Volume 10, Issue 6, pp 1940–1947 | Cite as

Cysteamine-Assisted Highly Sensitive Detection of Bisphenol A in Water Samples by Surface-Enhanced Raman Spectroscopy with Ag Nanoparticle-Modified Filter Paper as Substrate

  • Lei Zhang
  • Lihua Zhou
  • Wenjin Ji
  • Wei Song
  • Suqing Zhao
Article

Abstract

Bisphenol A (BPA) is a typical endocrine disruptor. It exists everywhere in the environment for its migration from the products of polycarbonate and epoxy resin. It is feasible to develop a fast and sensitive detection method for the effective monitoring of BPA. In this paper, we utilized the advantages of Ag nanoparticle-modified filter paper and cysteamine hydrochloride (Cys) to establish a surface-enhanced Raman spectroscopy (SERS) detection method of BPA. Good uniformity and more “hot spots” can be afforded with the SERS substrate fabricated by vacuum filtration of Ag nanoparticles on filter papers. Cys was used to catch BPA by the electrostatic interaction between positively charged groups of −NH3 + and hydroxy of BPA. Then, BPA-tailed Cys self-assembled to the surface of SERS substrate. Due to the preconcentration of BPA and high coverage of BPA-tailed Cys on the Ag nanoparticle-decorated filter paper, a highly sensitive detection of BPA in water samples was achieved. The method exhibited a good linear correlation ranging from 0.05 to 20 ng/mL with a limit detection of 0.005 ng/mL. Excellent recoveries in water samples from 90.2 to 121.1% were obtained.

Keywords

BPA SERS Cysteamine Ag nanoparticles Filter paper 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (41071176).

Compliance with Ethical Standards

Conflict of Interest

Lei Zhang declares that she has no conflict of interest. Lihua Zhou declares that she has no conflict of interest. Wenjin Ji declares that he has no conflict of interest. Wei Song declares that she has no conflict of interest. Suqing Zhao declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Not applicable.

References

  1. Benachour N, Aris A (2009) Toxic effects of low doses of bisphenol-A on human placental cells. TOXICOL APPL PHARM 241:322–328. doi: 10.1016/j.taap.2009.09.005 CrossRefGoogle Scholar
  2. Bhattacharjee Y, Chakraborty A (2014) Label-free cysteamine-capped silver nanoparticle-based colorimetric assay for Hg(II) detection in water with Subnanomolar exactitude. ACS Sustain Chem Eng 2:2149–2154. doi: 10.1021/sc500339n CrossRefGoogle Scholar
  3. Bolz A, Panne U, Rurack K, Buurman M (2016) Glass fibre paper-based test strips for sensitive SERS sensing. Anal Methods 8:1313–1318. doi: 10.1039/C5AY03096J CrossRefGoogle Scholar
  4. Cai Q et al (2014) Immobilization of biomolecules on cysteamine-modified polyaniline film for highly sensitive biosensing. Talanta 120:462–469. doi: 10.1016/j.talanta.2013.11.013 CrossRefGoogle Scholar
  5. Chen Q, Wang W, Ge Y, Li M, Xu S, Zhang X (2007) Direct aqueous synthesis of cysteamine-stabilized CdTe quantum dots and its deoxyribonucleic acid Bioconjugates CHINESE. J Anal Chem 35:135–138. doi: 10.1016/S1872-2040(07)60030-9 Google Scholar
  6. Cui L, Wu J, Li J, Ge Y, Ju H (2014) Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine. Biosens Bioelectron 55:272–277. doi: 10.1016/j.bios.2013.11.081 CrossRefGoogle Scholar
  7. Desmonda C, Kar S, Tai Y (2016) Formation of gold nanostructures on copier paper surface for cost effective SERS active substrate – effect of halide additives. Appl Surf Sci 367:362–369. doi: 10.1016/j.apsusc.2016.01.154 CrossRefGoogle Scholar
  8. Fan M et al (2014) Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Mater Lett 133:57–59. doi: 10.1016/j.matlet.2014.06.178 CrossRefGoogle Scholar
  9. Feng Y, Ning B, Su P, Wang H, Wang C, Chen F, Gao Z (2009) An immunoassay for bisphenol A based on direct hapten conjugation to the polystyrene surface of microtiter plates. Talanta 80:803–808. doi: 10.1016/j.talanta.2009.07.070 CrossRefGoogle Scholar
  10. He D et al (2015) Dietary exposure to endocrine disrupting chemicals in metropolitan population from China: a risk assessment based on probabilistic approach. Chemosphere 139:2–8. doi: 10.1016/j.chemosphere.2015.05.036 CrossRefGoogle Scholar
  11. Huang P, Zhao S, Eremin SA, Zheng S, Lai D, Chen Y, Guo B (2015) Analytical methods. doi:  10.1039/c5ay00818b.
  12. Ilkhani H, Hughes T, Li J, Zhong CJ, Hepel M (2016) Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron 80:257–264. doi: 10.1016/j.bios.2016.01.068 CrossRefGoogle Scholar
  13. Jamil AKM, Sivanesan A, Izake EL, Ayoko GA, Fredericks PM (2015) Molecular recognition of 2,4,6-trinitrotoluene by 6-aminohexanethiol and surface-enhanced Raman scattering sensor. Sensors Actuators B Chem 221:273–280. doi: 10.1016/j.snb.2015.06.046 CrossRefGoogle Scholar
  14. Jayram ND, Aishwarya D, Sonia S, Mangalaraj D, Kumar PS, Rao GM (2016) Analysis on superhydrophobic silver decorated copper oxide nanostructured thin films for SERS studies. J COLLOID INTERF SCI 477:209–219. doi: 10.1016/j.jcis.2016.05.051 CrossRefGoogle Scholar
  15. Jiang X, Yang M, Meng Y, Jiang W, Zhan J (2013) Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer. ACS APPL MATER INTER 5:6902–6908. doi: 10.1021/am401718p CrossRefGoogle Scholar
  16. Khantaw T, Boonmee C, Tuntulani T, Ngeontae W (2013) Selective turn-on fluorescence sensor for Ag + using cysteamine capped CdS quantum dots: determination of free Ag + in silver nanoparticles solution. Talanta 115:849–856. doi: 10.1016/j.talanta.2013.06.053 CrossRefGoogle Scholar
  17. Kim JE, Choi JH, Colas M, Kim DH, Lee H (2016) Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron 80:543–559. doi: 10.1016/j.bios.2016.02.015 CrossRefGoogle Scholar
  18. Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S (2011) Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with Plasmonic nanostructures. Anal Chem 83:8953–8958. doi: 10.1021/ac2016882 CrossRefGoogle Scholar
  19. Li C, Huang Y, Pei L, Wu W, Yu W, Rasco BA, Lai K (2014) Analyses of trace crystal violet and Leucocrystal violet with gold Nanospheres and commercial gold Nanosubstrates for surface-enhanced Raman spectroscopy. Food Anal Method 7:2107–2112. doi: 10.1007/s12161-014-9857-z CrossRefGoogle Scholar
  20. Li D, Zhu Q, Lv D, Zheng B, Liu Y, Chai Y, Lu F (2015) Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs. Anal Bioanal Chem 407:6031–6039. doi: 10.1007/s00216-015-8776-1 CrossRefGoogle Scholar
  21. Li H, Chong X, Chen Y, Yang L, Luo L, Zhao B, Tian Y (2016) Detection of 6-thioguanine by surface-enhanced Raman scattering spectroscopy using silver nanoparticles-coated silicon wafer. Colloids Surf A Physicochem Eng Asp 493:52–58. doi: 10.1016/j.colsurfa.2016.01.032 CrossRefGoogle Scholar
  22. Luo S, Sivashanmugan K, Liao J, Yao C, Peng H (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron 61:232–240. doi: 10.1016/j.bios.2014.05.013 CrossRefGoogle Scholar
  23. Mehn D, Morasso C, Vanna R, Bedoni M, Prosperi D, Gramatica F (2013) Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy. Vib Spectrosc 68:45–50. doi: 10.1016/j.vibspec.2013.05.010 CrossRefGoogle Scholar
  24. Michota A, Kudelski A, Bukowska J (2000) Chemisorption of cysteamine on silver studied by surface-enhanced Raman scattering. Langmuir 16:10236–10242. doi: 10.1021/la000707z CrossRefGoogle Scholar
  25. Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595. doi: 10.1007/s00216-013-6911-4 CrossRefGoogle Scholar
  26. Ngo YH, Li D, Simon GP, Garnier G (2012) Gold nanoparticle–paper as a three-dimensional surface enhanced Raman scattering substrate. Langmuir 28:8782–8790. doi: 10.1021/la3012734 CrossRefGoogle Scholar
  27. Qian W, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(912). doi: 10.1039/b708839f
  28. Qian W et al (2015) The toxic effects of bisphenol A on the mouse spermatocyte GC-2 cell line: the role of the Ca2+ − calmodulin-Ca2+ /calmodulin-dependent protein kinase II axis. J Appl Toxicol 35:1271–1277. doi: 10.1002/jat.3188 CrossRefGoogle Scholar
  29. Rajapandiyan P, Yang J (2014) Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J Raman Spectrosc 45:574–580. doi: 10.1002/jrs.4502 CrossRefGoogle Scholar
  30. Sadeghi M, Nematifar Z, Fattahi N, Pirsaheb M, Shamsipur M (2016) Determination of bisphenol A in food and environmental samples using combined solid-phase extraction–dispersive liquid–liquid Microextraction with solidification of floating organic drop followed by HPLC. FOOD ANAL METHOD 9:1814–1824. doi: 10.1007/s12161-015-0357-6 CrossRefGoogle Scholar
  31. Sallum LF, Soares FLF, Ardila JA, Carneiro RL (2014) Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation. Talanta 118:353–358. doi: 10.1016/j.talanta.2013.10.039 CrossRefGoogle Scholar
  32. Shi Y, Li L, Yang M, Jiang X, Zhao Q, Zhan J (2014) A disordered silver nanowires membrane for extraction and surface-enhanced Raman spectroscopy detection. Analyst 139(2525). doi: 10.1039/c4an00163j
  33. Song P, Guo X, Pan Y, Wen Y, Zhang Z, Yang H (2013) SERS and in situ SERS spectroelectrochemical investigations of serotonin monolayers at a silver electrode. J Electroanal Chem 688:384–391. doi: 10.1016/j.jelechem.2012.09.008 CrossRefGoogle Scholar
  34. Ullah R, Zheng Y (2016) Raman spectroscopy of ‘bisphenol A. J Mol Struct 1108:649–653. doi: 10.1016/j.molstruc.2015.12.060 CrossRefGoogle Scholar
  35. Vázquez CI, Andrade GFS, Temperini MLA, Lacconi GI (2015) Spectroelectrochemical study of picolinic acid adsorption during silver electrodeposition. Electrochim Acta 156:154–162. doi: 10.1016/j.electacta.2015.01.034 CrossRefGoogle Scholar
  36. Wang S, Lu H, Ma N, Bao Y, Wang H, Liu Z, Yao W (2011) DFT and surface-enhanced Raman scattering studies of BPA. SPECTROSC SPECT ANAL 31:1006–1009. doi: 10.3964/j.issn.1000-0593{2011)04-1006-04 Google Scholar
  37. Wang Z et al (2013) A novel method for bisphenol A analysis in dairy products using Graphene as an adsorbent for solid phase extraction followed by ion chromatography. FOOD ANAL METHOD 6:1537–1543. doi: 10.1007/s12161-013-9567-y CrossRefGoogle Scholar
  38. Wang C, Liu B, Dou X (2016) Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sensors Actuators B Chem 231:357–364. doi: 10.1016/j.snb.2016.03.030 CrossRefGoogle Scholar
  39. Xu YY et al (2015) Layer-controlled large area MoS2 layers grown on mica substrate for surface-enhanced Raman scattering. Appl Surf Sci 357:1708–1713. doi: 10.1016/j.apsusc.2015.10.032 CrossRefGoogle Scholar
  40. Xue J, Li D, Qu L, Long Y (2013) Surface-imprinted core–shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Anal Chim Acta 777:57–62. doi: 10.1016/j.aca.2013.03.037 CrossRefGoogle Scholar
  41. Zhang J, Cooke GM, Curran IHA, Goodyer CG, Cao X (2011) GC–MS analysis of bisphenol A in human placental and fetal liver samples. J Chromatogr B 879:209–214. doi: 10.1016/j.jchromb.2010.11.031 CrossRefGoogle Scholar
  42. Zhang C, Lu Y, Zhao B, Hao Y, Liu Y (2016) Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate. Appl Surf Sci 377:167–173. doi: 10.1016/j.apsusc.2016.03.132 CrossRefGoogle Scholar
  43. Zhao L, Kim T, Kim H, Ahn J, Kim SY (2015) Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Acta Biomater 20:155–164. doi: 10.1016/j.actbio.2015.03.036 CrossRefGoogle Scholar
  44. Zhu G, Hu Y, Gao J, Zhong L (2011) Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Anal Chim Acta 697:61–66. doi: 10.1016/j.aca.2011.04.031 CrossRefGoogle Scholar
  45. Zhu Y, Zhang L, Yang L (2015) Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection. Mater Res Bull 63:199–204. doi: 10.1016/j.materresbull.2014.12.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry/Guangdong Provincial Key Laboratory of Functional Soft Condensed MatterGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Analytical and Testing CenterGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations