Skip to main content
Log in

Cysteamine-Assisted Highly Sensitive Detection of Bisphenol A in Water Samples by Surface-Enhanced Raman Spectroscopy with Ag Nanoparticle-Modified Filter Paper as Substrate

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is a typical endocrine disruptor. It exists everywhere in the environment for its migration from the products of polycarbonate and epoxy resin. It is feasible to develop a fast and sensitive detection method for the effective monitoring of BPA. In this paper, we utilized the advantages of Ag nanoparticle-modified filter paper and cysteamine hydrochloride (Cys) to establish a surface-enhanced Raman spectroscopy (SERS) detection method of BPA. Good uniformity and more “hot spots” can be afforded with the SERS substrate fabricated by vacuum filtration of Ag nanoparticles on filter papers. Cys was used to catch BPA by the electrostatic interaction between positively charged groups of −NH3 + and hydroxy of BPA. Then, BPA-tailed Cys self-assembled to the surface of SERS substrate. Due to the preconcentration of BPA and high coverage of BPA-tailed Cys on the Ag nanoparticle-decorated filter paper, a highly sensitive detection of BPA in water samples was achieved. The method exhibited a good linear correlation ranging from 0.05 to 20 ng/mL with a limit detection of 0.005 ng/mL. Excellent recoveries in water samples from 90.2 to 121.1% were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  • Benachour N, Aris A (2009) Toxic effects of low doses of bisphenol-A on human placental cells. TOXICOL APPL PHARM 241:322–328. doi:10.1016/j.taap.2009.09.005

    Article  CAS  Google Scholar 

  • Bhattacharjee Y, Chakraborty A (2014) Label-free cysteamine-capped silver nanoparticle-based colorimetric assay for Hg(II) detection in water with Subnanomolar exactitude. ACS Sustain Chem Eng 2:2149–2154. doi:10.1021/sc500339n

    Article  CAS  Google Scholar 

  • Bolz A, Panne U, Rurack K, Buurman M (2016) Glass fibre paper-based test strips for sensitive SERS sensing. Anal Methods 8:1313–1318. doi:10.1039/C5AY03096J

    Article  CAS  Google Scholar 

  • Cai Q et al (2014) Immobilization of biomolecules on cysteamine-modified polyaniline film for highly sensitive biosensing. Talanta 120:462–469. doi:10.1016/j.talanta.2013.11.013

    Article  CAS  Google Scholar 

  • Chen Q, Wang W, Ge Y, Li M, Xu S, Zhang X (2007) Direct aqueous synthesis of cysteamine-stabilized CdTe quantum dots and its deoxyribonucleic acid Bioconjugates CHINESE. J Anal Chem 35:135–138. doi:10.1016/S1872-2040(07)60030-9

    CAS  Google Scholar 

  • Cui L, Wu J, Li J, Ge Y, Ju H (2014) Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine. Biosens Bioelectron 55:272–277. doi:10.1016/j.bios.2013.11.081

    Article  CAS  Google Scholar 

  • Desmonda C, Kar S, Tai Y (2016) Formation of gold nanostructures on copier paper surface for cost effective SERS active substrate – effect of halide additives. Appl Surf Sci 367:362–369. doi:10.1016/j.apsusc.2016.01.154

    Article  CAS  Google Scholar 

  • Fan M et al (2014) Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Mater Lett 133:57–59. doi:10.1016/j.matlet.2014.06.178

    Article  CAS  Google Scholar 

  • Feng Y, Ning B, Su P, Wang H, Wang C, Chen F, Gao Z (2009) An immunoassay for bisphenol A based on direct hapten conjugation to the polystyrene surface of microtiter plates. Talanta 80:803–808. doi:10.1016/j.talanta.2009.07.070

    Article  CAS  Google Scholar 

  • He D et al (2015) Dietary exposure to endocrine disrupting chemicals in metropolitan population from China: a risk assessment based on probabilistic approach. Chemosphere 139:2–8. doi:10.1016/j.chemosphere.2015.05.036

    Article  CAS  Google Scholar 

  • Huang P, Zhao S, Eremin SA, Zheng S, Lai D, Chen Y, Guo B (2015) Analytical methods. doi: 10.1039/c5ay00818b.

  • Ilkhani H, Hughes T, Li J, Zhong CJ, Hepel M (2016) Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron 80:257–264. doi:10.1016/j.bios.2016.01.068

    Article  CAS  Google Scholar 

  • Jamil AKM, Sivanesan A, Izake EL, Ayoko GA, Fredericks PM (2015) Molecular recognition of 2,4,6-trinitrotoluene by 6-aminohexanethiol and surface-enhanced Raman scattering sensor. Sensors Actuators B Chem 221:273–280. doi:10.1016/j.snb.2015.06.046

    Article  CAS  Google Scholar 

  • Jayram ND, Aishwarya D, Sonia S, Mangalaraj D, Kumar PS, Rao GM (2016) Analysis on superhydrophobic silver decorated copper oxide nanostructured thin films for SERS studies. J COLLOID INTERF SCI 477:209–219. doi:10.1016/j.jcis.2016.05.051

    Article  CAS  Google Scholar 

  • Jiang X, Yang M, Meng Y, Jiang W, Zhan J (2013) Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer. ACS APPL MATER INTER 5:6902–6908. doi:10.1021/am401718p

    Article  CAS  Google Scholar 

  • Khantaw T, Boonmee C, Tuntulani T, Ngeontae W (2013) Selective turn-on fluorescence sensor for Ag + using cysteamine capped CdS quantum dots: determination of free Ag + in silver nanoparticles solution. Talanta 115:849–856. doi:10.1016/j.talanta.2013.06.053

    Article  CAS  Google Scholar 

  • Kim JE, Choi JH, Colas M, Kim DH, Lee H (2016) Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron 80:543–559. doi:10.1016/j.bios.2016.02.015

    Article  CAS  Google Scholar 

  • Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S (2011) Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with Plasmonic nanostructures. Anal Chem 83:8953–8958. doi:10.1021/ac2016882

    Article  CAS  Google Scholar 

  • Li C, Huang Y, Pei L, Wu W, Yu W, Rasco BA, Lai K (2014) Analyses of trace crystal violet and Leucocrystal violet with gold Nanospheres and commercial gold Nanosubstrates for surface-enhanced Raman spectroscopy. Food Anal Method 7:2107–2112. doi:10.1007/s12161-014-9857-z

    Article  Google Scholar 

  • Li D, Zhu Q, Lv D, Zheng B, Liu Y, Chai Y, Lu F (2015) Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs. Anal Bioanal Chem 407:6031–6039. doi:10.1007/s00216-015-8776-1

    Article  CAS  Google Scholar 

  • Li H, Chong X, Chen Y, Yang L, Luo L, Zhao B, Tian Y (2016) Detection of 6-thioguanine by surface-enhanced Raman scattering spectroscopy using silver nanoparticles-coated silicon wafer. Colloids Surf A Physicochem Eng Asp 493:52–58. doi:10.1016/j.colsurfa.2016.01.032

    Article  CAS  Google Scholar 

  • Luo S, Sivashanmugan K, Liao J, Yao C, Peng H (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron 61:232–240. doi:10.1016/j.bios.2014.05.013

    Article  CAS  Google Scholar 

  • Mehn D, Morasso C, Vanna R, Bedoni M, Prosperi D, Gramatica F (2013) Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy. Vib Spectrosc 68:45–50. doi:10.1016/j.vibspec.2013.05.010

    Article  CAS  Google Scholar 

  • Michota A, Kudelski A, Bukowska J (2000) Chemisorption of cysteamine on silver studied by surface-enhanced Raman scattering. Langmuir 16:10236–10242. doi:10.1021/la000707z

    Article  CAS  Google Scholar 

  • Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595. doi:10.1007/s00216-013-6911-4

    Article  CAS  Google Scholar 

  • Ngo YH, Li D, Simon GP, Garnier G (2012) Gold nanoparticle–paper as a three-dimensional surface enhanced Raman scattering substrate. Langmuir 28:8782–8790. doi:10.1021/la3012734

    Article  CAS  Google Scholar 

  • Qian W, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(912). doi:10.1039/b708839f

  • Qian W et al (2015) The toxic effects of bisphenol A on the mouse spermatocyte GC-2 cell line: the role of the Ca2+ − calmodulin-Ca2+ /calmodulin-dependent protein kinase II axis. J Appl Toxicol 35:1271–1277. doi:10.1002/jat.3188

    Article  CAS  Google Scholar 

  • Rajapandiyan P, Yang J (2014) Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J Raman Spectrosc 45:574–580. doi:10.1002/jrs.4502

    Article  CAS  Google Scholar 

  • Sadeghi M, Nematifar Z, Fattahi N, Pirsaheb M, Shamsipur M (2016) Determination of bisphenol A in food and environmental samples using combined solid-phase extraction–dispersive liquid–liquid Microextraction with solidification of floating organic drop followed by HPLC. FOOD ANAL METHOD 9:1814–1824. doi:10.1007/s12161-015-0357-6

    Article  Google Scholar 

  • Sallum LF, Soares FLF, Ardila JA, Carneiro RL (2014) Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation. Talanta 118:353–358. doi:10.1016/j.talanta.2013.10.039

    Article  CAS  Google Scholar 

  • Shi Y, Li L, Yang M, Jiang X, Zhao Q, Zhan J (2014) A disordered silver nanowires membrane for extraction and surface-enhanced Raman spectroscopy detection. Analyst 139(2525). doi:10.1039/c4an00163j

  • Song P, Guo X, Pan Y, Wen Y, Zhang Z, Yang H (2013) SERS and in situ SERS spectroelectrochemical investigations of serotonin monolayers at a silver electrode. J Electroanal Chem 688:384–391. doi:10.1016/j.jelechem.2012.09.008

    Article  CAS  Google Scholar 

  • Ullah R, Zheng Y (2016) Raman spectroscopy of ‘bisphenol A. J Mol Struct 1108:649–653. doi:10.1016/j.molstruc.2015.12.060

    Article  CAS  Google Scholar 

  • Vázquez CI, Andrade GFS, Temperini MLA, Lacconi GI (2015) Spectroelectrochemical study of picolinic acid adsorption during silver electrodeposition. Electrochim Acta 156:154–162. doi:10.1016/j.electacta.2015.01.034

    Article  Google Scholar 

  • Wang S, Lu H, Ma N, Bao Y, Wang H, Liu Z, Yao W (2011) DFT and surface-enhanced Raman scattering studies of BPA. SPECTROSC SPECT ANAL 31:1006–1009. doi:10.3964/j.issn.1000-0593{2011)04-1006-04

    CAS  Google Scholar 

  • Wang Z et al (2013) A novel method for bisphenol A analysis in dairy products using Graphene as an adsorbent for solid phase extraction followed by ion chromatography. FOOD ANAL METHOD 6:1537–1543. doi:10.1007/s12161-013-9567-y

    Article  Google Scholar 

  • Wang C, Liu B, Dou X (2016) Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sensors Actuators B Chem 231:357–364. doi:10.1016/j.snb.2016.03.030

    Article  CAS  Google Scholar 

  • Xu YY et al (2015) Layer-controlled large area MoS2 layers grown on mica substrate for surface-enhanced Raman scattering. Appl Surf Sci 357:1708–1713. doi:10.1016/j.apsusc.2015.10.032

    Article  CAS  Google Scholar 

  • Xue J, Li D, Qu L, Long Y (2013) Surface-imprinted core–shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Anal Chim Acta 777:57–62. doi:10.1016/j.aca.2013.03.037

    Article  CAS  Google Scholar 

  • Zhang J, Cooke GM, Curran IHA, Goodyer CG, Cao X (2011) GC–MS analysis of bisphenol A in human placental and fetal liver samples. J Chromatogr B 879:209–214. doi:10.1016/j.jchromb.2010.11.031

    Article  CAS  Google Scholar 

  • Zhang C, Lu Y, Zhao B, Hao Y, Liu Y (2016) Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate. Appl Surf Sci 377:167–173. doi:10.1016/j.apsusc.2016.03.132

    Article  CAS  Google Scholar 

  • Zhao L, Kim T, Kim H, Ahn J, Kim SY (2015) Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Acta Biomater 20:155–164. doi:10.1016/j.actbio.2015.03.036

    Article  CAS  Google Scholar 

  • Zhu G, Hu Y, Gao J, Zhong L (2011) Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Anal Chim Acta 697:61–66. doi:10.1016/j.aca.2011.04.031

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang L, Yang L (2015) Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection. Mater Res Bull 63:199–204. doi:10.1016/j.materresbull.2014.12.004

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (41071176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqing Zhao.

Ethics declarations

Conflict of Interest

Lei Zhang declares that she has no conflict of interest. Lihua Zhou declares that she has no conflict of interest. Wenjin Ji declares that he has no conflict of interest. Wei Song declares that she has no conflict of interest. Suqing Zhao declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhou, L., Ji, W. et al. Cysteamine-Assisted Highly Sensitive Detection of Bisphenol A in Water Samples by Surface-Enhanced Raman Spectroscopy with Ag Nanoparticle-Modified Filter Paper as Substrate. Food Anal. Methods 10, 1940–1947 (2017). https://doi.org/10.1007/s12161-016-0762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0762-5

Keywords

Navigation