Food Analytical Methods

, Volume 10, Issue 6, pp 2036–2045 | Cite as

Dual-Color Upconversion Nanoparticles (UCNPs)-Based Fluorescent Immunoassay Probes for Sensitive Sensing Foodborne Pathogens

  • Bin Zhang
  • Huanhuan Li
  • Wenxiu Pan
  • Quansheng Chen
  • Qin Ouyang
  • Jiewen Zhao


Rare earth-doped upconversion nanoparticles (UCNPs) have promising potential in biodetection due to their peculiar frequency upconverting capabilities and high detection sensitivity. Here, we report a novel dual-color UCNP-based bacterium-sensing biosensor for simultaneously Escherichia coli and Staphylococcus aureus detection using UCNP as a fluorescence marker and conjugated with antibodies as the specific molecular recognition probe. Dual-color UCNPs were fabricated via varying lanthanide dopants to acquire the well-separated emission peaks. When E. coli and S. aureus were added into the reaction system, the recognition probes would capture the target bacteria through the specific binding of antibody. Then, the fluorescence intensities decreased (∆I = I o -I) were observed to increase linearly with the rising concentration of the E. coli (664 nm) and S. aureus (806 nm) from 47 to 47 × 106 cfu mL−1 (R 2 = 0.98) and 64 to 64 × 106 cfu mL−1 (R 2 = 0.97), respectively, resulting in the relatively low limit of 13 and 15 cfu mL−1 for E. coli and S. aureus. Furthermore, this UCNP-based bacterium-sensing biosensor could also be successfully applied to simultaneously detect E. coli and S. aureus in adulterated meat and milk samples.


Dual color Rare earth-doped nanoparticles Fluorescent probes Antibody Simultaneous sensing 



This work has been financially supported by the National Natural Science Foundation of China (31371770), Key R&D Program of Jiangsu Province (No. BE2015302), Postgraduate Innovative Program for Higher Education Institutions in Jiangsu Province (KYLX16_0913), the Natural Science Foundation of Jiangsu Province (Youth) (BK20150502), the China Postdoctoral Science Foundation (2015M571698), and the Advanced Talents Science Foundation of Jiangsu University (15JDG064).

Compliance with Ethical Standards


This study has no financial relationship with the organization that sponsored the research.

Conflict of Interest

Bin Zhang declares that he has no conflict of interest. Huanhuan Li declares that he has no conflict of interest. Wenxiu Pan declares that he has no conflict of interest. Quansheng Chen declares that he has no conflict of interest. Qin Ouyang declares that he has no conflict of interest. Jiewen Zhao declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Supplementary material

12161_2016_758_MOESM1_ESM.docx (3.2 mb)
ESM 1 (DOCX 3242 kb)


  1. Ang LY, Lim ME, Ong LC, Zhang Y (2011) Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine 6(7):1273–1288CrossRefGoogle Scholar
  2. Bottrill M, Green M (2011) Some aspects of quantum dot toxicity. Chem Commun 47(25):7039–7050CrossRefGoogle Scholar
  3. Cheng L, Wang C, Liu Z (2013) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5(1):23–37CrossRefGoogle Scholar
  4. Chung HJ, Castro CM, Im H, Lee H, Weissleder R (2013) A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol 8(5):369–375CrossRefGoogle Scholar
  5. Deng M, Wang L (2014) Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size. Nano Res 7(5):782–793CrossRefGoogle Scholar
  6. Gu Z, Yan L, Tian G, Li S, Chai Z, Zhao Y (2013) Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv Mater 25(28):3758–3779CrossRefGoogle Scholar
  7. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50(26):5808–5829CrossRefGoogle Scholar
  8. Hao S, Chen G, Yang C (2013) Sensing using rare-earth-doped upconversion nanoparticles. Theranostics 3(5):331–345CrossRefGoogle Scholar
  9. Huang P, Lin J, Wang S, Zhou Z, Li Z, Wang Z, Zhang C, Yue X, Niu G, Yang M (2013) Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 34(19):4643–4654CrossRefGoogle Scholar
  10. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15(11):549–578CrossRefGoogle Scholar
  11. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Döpfer D, Fazil A, Christa L, Walker F, Hald T, Hall AJ, Keddy KH, Lake RJ, Lanata CF, Torgerson PR, Havelaar AH, Angulo FJ (2015) World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. Plos Medicine 12(12):22–27Google Scholar
  12. Löffler B, Hussain M, Grundmeier M, Brück M, Holzinger D, Varga G, Roth J, Kahl BC, Proctor RA, Peters G (2010) Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6(1):e1000715CrossRefGoogle Scholar
  13. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133(43):17122–17125CrossRefGoogle Scholar
  14. Liu Y, Chen M, Cao TY, Sun Y, Li C Y, Liu Q, Yang TS, Yao LM, Feng W, Li F Y* (2013) A cyanine-modified nanosystem for upconversion luminescence bioimaging of methylmercury. J Am Chem Soc 135(26):9869–9876Google Scholar
  15. Luo J, Liu X, Tian Q, Yue W, Zeng J, Chen G, Cai X (2009) Disposable bioluminescence-based biosensor for detection of bacterial count in food. Anal Biochem 394(1):1–6CrossRefGoogle Scholar
  16. Miskinyte M, Sousa A, Ramiro RS, de Sousa JAM, Kotlinowski J, Caramalho I, Magalhães S, Soares MP, Gordo I (2013) The genetic basis of Escherichia coli pathoadaptation to macrophages. PLoS Pathog 9(12):e1003802CrossRefGoogle Scholar
  17. Niu W, Wu S, Zhang S (2010) A facile and general approach for the multicolor tuning of lanthanide-ion doped NaYF4 upconversion nanoparticles within a fixed composition. J Mater Chem 20(41):9113–9117CrossRefGoogle Scholar
  18. Ong LC, Ang LY, Alonso S, Zhang Y (2014) Bacterial imaging with photostable upconversion fluorescent nanoparticles. Biomaterials 35(9):2987–2998CrossRefGoogle Scholar
  19. Pan W, Zhao J, Chen Q (2015) Fabricating upconversion fluorescent probes for rapidly sensing foodborne pathogens. J Agric Food Chem 63(36):8068–8074CrossRefGoogle Scholar
  20. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178(1–2):7–28CrossRefGoogle Scholar
  21. Shan S, Lai W, Xiong Y, Wei H, Xu H (2015) Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J Agric Food Chem 63(3):745–753CrossRefGoogle Scholar
  22. Sharma H, Mutharasan R (2013) Review of biosensors for foodborne pathogens and toxins. Sensors Actuators B Chem 183:535–549CrossRefGoogle Scholar
  23. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710CrossRefGoogle Scholar
  24. Song E, Yu M, Wang Y, Hu W, Cheng D, Swihart MT, Song Y (2015) Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens Bioelectron 72:320–325CrossRefGoogle Scholar
  25. Tram K, Kanda P, Salena BJ, Huan S, Li Y (2014) Translating bacterial detection by DNAzymes into a litmus test. Angew Chem Int Ed 53(47):12799–12802CrossRefGoogle Scholar
  26. Velusamy V (2012) Design, development and characterization of a handheld electrochemical analyzer system: in the perspective of DNA biosensors for foodbourne pathogen detection. University of Limerick 46:17–22Google Scholar
  27. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010a) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854CrossRefGoogle Scholar
  28. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X (2011) Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater 10(12):968–973CrossRefGoogle Scholar
  29. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010b) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065CrossRefGoogle Scholar
  30. Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100–3107CrossRefGoogle Scholar
  31. Wu W, Zhao S, Mao Y, Fang Z, Lu X, Zeng L (2015) A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal Chim Acta 861:62–68CrossRefGoogle Scholar
  32. Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun YP (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309CrossRefGoogle Scholar
  33. Zhang H, Ma X, Liu Y, Duan N, Wu S, Wang Z, Xu B (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bin Zhang
    • 1
  • Huanhuan Li
    • 1
  • Wenxiu Pan
    • 1
  • Quansheng Chen
    • 1
  • Qin Ouyang
    • 1
  • Jiewen Zhao
    • 1
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations