Advertisement

Food Analytical Methods

, Volume 10, Issue 6, pp 1899–1908 | Cite as

Optimization and Validation of a Simple Method for Mineral Potential Evaluation in Citrus Residue

  • Joyce Grazielle Siqueira Silva
  • Eduardo Adilson Orlando
  • Ana Paula Rebellato
  • Juliana Azevedo Lima Pallone
Article

Abstract

The aim of this study was to optimize and validate a simple method for determination of the potential of important minerals for health (calcium, iron, zinc, and magnesium) in residue from orange and lemon juice industries and determine whether there are differences concerning these nutrients during the months when these fruits were harvested. The mineralization was optimized using an experimental design and then validated. Dried residue samples of Pera orange, Hamlin orange, Tahiti lime, Sicilian lemon, and a mixture composed of oranges and lemons were digested and analyzed by flame atomic absorption spectrophotometry (FAAS). Citrus fruit samples, harvested in different months, were also analyzed. The most appropriate condition for mineralization was the use of the highest values of sample mass (0.6 g) and nitric acid volume (8.0 mL). All the parameters of validation were met. The average mineral content levels found were 6.8 mg/g for calcium and 116.4, 915.5, and 7.4 μg/g for iron, magnesium, and zinc, respectively. Thus, a portion of 100 g of residue can provide 68.3% of the Recommended Daily Intake (RDI) for calcium, 35.2% for magnesium, 83.1% for iron, and 10.6% for zinc. The principal component analysis showed no clear separation among oranges, lemons, and the mixture as for their composition. The mineral content levels found indicate that citrus residue has nutritional potential for use in human food and can contribute significantly to the achievement of the RDIs, especially for calcium and iron, since their deficiencies are considered major public health problems.

Keywords

Iron Calcium Zinc Magnesium Experimental design Lime 

Notes

Acknowledgements

The authors are thankful to CNPq (Brazilian National Council for Scientific and Technological Development) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support and to Paulo H.M. Kiyataka for performing the residual carbon analyses at the Institute of Food Technology (ITAL), Brazil.

Compliance with Ethical Standards

Funding

On behalf of all the authors of this “Original Article,” author Juliana Pallone declares that this study was funded by CNPq (Brazilian National Council for Scientific and Technological Development) and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Conflict of Interest

Joyce Grazielle Siqueira Silva declares that she has no conflict of interest. Eduardo Adilson Orlando declares that he has no conflict of interest. Ana Paula Rebellato declares that she has no conflict of interest. Juliana Azevedo Lima Pallone declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

References

  1. Alonso GJI, Marchante-Gayón JM, Moldovan M (2015) New developments in food analysis by ICP-MS. In: GUARDIA M, GARRIGUES S (eds) Handbook of mineral elements in food. Wiley, United Kingdom, pp. 239–262Google Scholar
  2. AOAC (2002) Association of official analytical chemists International. AOAC guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. http://www.aoac.org/imis15prod/AOAC_Docs/StandardsDevelopment/SLV_Guidelines_Dietary_Supplements.pdf. Accessed 07 March 2016
  3. Barros HR, Ferreira TA, Genovese MI (2012) Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem 134:1892–1898. doi: 10.1016/j.foodchem.2012.03.090 CrossRefGoogle Scholar
  4. Boen TR, Pallone JAL (2009) Folic acid, iron, and zinc contents in chosen food products prepared with fortified flours. Cereal Chem 86:695–700CrossRefGoogle Scholar
  5. Bożym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M (2015) An analysis of metal concentrations in food wastes for biogas production. Renew Energy 77:467–472. doi: 10.1016/j.renene.2014.11.010 CrossRefGoogle Scholar
  6. BRASIL (1998) Ministério da Saúde, Agência Nacional de Vigilância Sanitária. Portaria n° 27, de 13 de janeiro de 1998. Regulamento técnico referente à informação nutricional complementar (declarações relacionadas ao conteúdo de nutrientesGoogle Scholar
  7. BRASIL (2005) ANVISA. Agência Nacional de Vigilância Sanitária. Resolução RDC n° 269, de 22 de setembro de 2005. Regulamento técnico sobre a ingestão diária recomendada (IDR) de proteína, vitaminas e mineraisGoogle Scholar
  8. BRASIL (2011) INMETRO. Instituto Nacional de Metrologia, Normalização e Qualidade Industrial.Orientações sobre Validação de Métodos de Ensaios Químicos, DOQ-CGCRE-008Google Scholar
  9. Choi IS, Lee YG, Khanal SK, Park BJ, Bae H (2015) A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl Energy 140:65–74. doi: 10.1016/j.apenergy.2014.11.070 CrossRefGoogle Scholar
  10. Dean JR, Ma R (2008) Atomic absorption, atomic emission and inductively coupled plasma spectroscopies in food analysis. In: Ötleş S (ed) Handbook of food analysis instruments. Taylor & Francis Group, LLC, Boca Raton, pp. 319–346Google Scholar
  11. Dhiman A, Nanda A, Ahmad S (2011) Metal analysis in Citrus sinensis fruit peel and Psidium guajava leaf. Toxicol Int 18(163):167Google Scholar
  12. Etcheverry P, Grusak MA, Fleige LE (2012) Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B(6), B(12), D, and E. Front Physiol 3(317). doi: 10.3389/fphys.2012.00317
  13. Fraige K, Respilho FN, Rezende MOO (2007) Determinação de zinco em solo utilizando colorimetria. Química Nov. 30(588):591Google Scholar
  14. Gondim JAM, Moura MFV, Dantas AS, Medeiros RLS, Santos KM (2005) Composição centesimal e de minerais em cascas de frutas. Cienc Tecnol Aliment 25:825–827CrossRefGoogle Scholar
  15. Gouveia ST, Silva FV, Costa LM, Nogueira ARA, Nóbrega JA (2001) Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations. Anal Chim Acta 445:269–275. doi: 10.1016/S0003-2670(01)01255-7 CrossRefGoogle Scholar
  16. Hambidge M (2000) Human zinc deficiency. J Nutr 1344S–1349SGoogle Scholar
  17. IBGE (2014) Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal 2014. www.sidra.ibge.gov.br/bda/pesquisas/pam/. Accessed 01 March 2016
  18. INACG, WHO, UNICEF (1998) International Nutritional Anemia Consultative Group. Guidelines for the use of iron supplements to prevent and treat iron deficiency Anemia. http://www.who.int/nutrition/publications/micronutrients/guidelines_for_Iron_supplementation.pdf. Accessed 24 Aug 2016
  19. Júnior JVM, Macedo JA, Macedo GA (2012) A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace. Bioprocess Biosyst Eng 35:477–482. doi: 10.1007/s00449-011-0587-y CrossRefGoogle Scholar
  20. Júnior JVM, Nakajima VM, Macedo JA, Macedo GA (2014) Rich bioactive phenolic extract production by microbial biotransformation of Brazilian Citrus residues. Chem Eng Res Des 92:1802–1810. doi: 10.1016/j.cherd.2014.07.014 CrossRefGoogle Scholar
  21. Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Asp Med 22:1–87CrossRefGoogle Scholar
  22. López-Marcos MC, Bailina C, Viuda-Martos M, Pérez-Alvarez JA, Fernández-López J (2015) Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods. Food Bioprocess Technol 8:2400–2408. doi: 10.1007/s11947-015-1591-z CrossRefGoogle Scholar
  23. MAPA (2015) Ministério da Agricultura Pecuária e Abastecimento. Culturas, Citrus http://www.agricultura.gov.br/vegetal/culturas/citrus. Accessed 07 Apr 2015Google Scholar
  24. Munhoz JR, Morabito R (2010) Otimização no planejamento agregado de produção em indústrias de processamento de suco congelado de laranja. Gestão e Prodrução 17:465–481CrossRefGoogle Scholar
  25. Neto BB, Scarminio IS, Bruns RE (2010) Como fazer experimentos, 4ª edn. Bookman, Porto AlegreGoogle Scholar
  26. Nielsen FH (2010) Magnesium, inflammation, and obesity in chronic disease. Nutr Rev 68:333–340. doi: 10.1111/j.1753-4887.2010.00293.x CrossRefGoogle Scholar
  27. Pereira-Filho ER, Poppi RJ, Arruda MAZ (2002) Emprego de planejamento fatorial para a otimização das temperaturas de pirólise e atomização de Al, Cd, Mo e Pb por ETAAS. Química Nov. 25:246–253Google Scholar
  28. Rezzadori K, Benedetti S (2009) Proposições para valorização de resíduos do processamento do suco de laranja 2nd International Workshop | Advances in Cleaner Production. 1–11Google Scholar
  29. Rodrigues MI, Iemma AF (2009) Planejamento de experimentos e otimização de processos. Segunda edn. Casa do Espírito Amigo Fraternidade Fé e Amor, Campinas, São PauloGoogle Scholar
  30. Santos AAO, Silva IVC, Santos JPA, Santana DG, Almeida ML, Marcellini PS (2011) Elaboração de biscoitos de chocolate com substituição parcial da farinha de trigo por polvilho azedo e farinha de albedo de laranja. Ciência Rural 41:531–536CrossRefGoogle Scholar
  31. Santos LMG, Gonçalves JM, Jacob SC (2008) Determinação simultânea de As, Cd e Pb em amostras de água purificada para hemodiálise por espectrometria de absorção atômica com forno de grafite, após otimização multivariada baseada no uso de planejamento experimental. Química Nov. 31:975–979Google Scholar
  32. Serefko A, Szopa A, Wlaz P, Nowak G, Radziwon-Zaleska M, Skalski M, Pole-Serefko E (2013) Magnesium in depression. Pharmacol Rep 62:304–312Google Scholar
  33. Skoog DA, Hooler FJ, Nieman TA (1998) Principles of instrumental analysis. Saunders Colege Publishing, FloridaGoogle Scholar
  34. Trindade JM (2009) Otimização de um procedimento eletroanalítico usando planejamento experimental para determinação de metais em gasolina comum. Tese, Universidade Federal da ParaíbaGoogle Scholar
  35. Vamvuka D, Trikouvertis M, Pentari D, Alevizos G (2014) Evaluation of ashes produced from fluidized bed combustion of residues from oranges’ plantations and processing. Renew Energy 72:336–343. doi: 10.1016/j.renene.2014.07.029 CrossRefGoogle Scholar
  36. WHO (2006) World Health Organization. Guidelines on food fortification with micronutrientes. http://apps.who.int/iris/bitstream/10665/43412/1/9241594012_eng.pdf. Accessed 24 Aug 2016
  37. Xu GH, Chen JC, Liu DH, Zhang YH, Jiang P, Ye XQ (2008) Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J Food Sci 73:C11–C18. doi: 10.1111/j.1750-3841.2007.00546.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Joyce Grazielle Siqueira Silva
    • 1
  • Eduardo Adilson Orlando
    • 1
  • Ana Paula Rebellato
    • 1
  • Juliana Azevedo Lima Pallone
    • 1
  1. 1.Department of Food Science, School of Food EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations