Biorefinery Platform for Spathaspora passalidarum NRRL Y-27907 in the Production of Ethanol, Xylitol, and Single Cell Protein from Sugarcane Bagasse

Abstract

Spathaspora passalidarum is a naturally pentose-fermenting yeast with the potential to be applied for biotransformation of sugars from lignocellulosic biomasses. Despite being mostly investigated for ethanol production from sugarcane bagasse sugars (mainly xylose and glucose), this microorganism is also capable of producing high xylitol concentrations as a by-product of the ethanol fermentation. The integration of ethanol and xylitol production can improve the economic viability of the process due to the lower sale price of ethanol and the higher added-value of xylitol, a sucrose-substitute sugar with healthier properties. Considering the metabolic pathways interaction from glucose and xylose, it is essential to understand the effect of different glucose and xylose concentrations in the production of ethanol and xylitol by S. passalidarum. In this way, a simultaneous production of both products for the development of an integrated platform for food and chemical and biofuel industries can be accessed. Yeast biomass can also be recovered and applied as a protein source. Therefore, in this study, the fermentative performance of S. passalidarum was investigated in batch fermentations with different xylose and glucose concentrations, using synthetic substrate. The ATP levels and the enzymatic activities of xylose reductase (XR), xylitol dehydrogenase (XDH), and alcohol dehydrogenase (ADH) were also determined for each condition. The results indicated that low amounts of glucose (35%) were necessary to promote a higher xylitol production (10.58 ± 0.29 g/L) without losses on ethanol yield (78.99 ± 4.41%), being the most interesting condition for simultaneous formation of both products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Chandel AK, Garlapati VK, Jeevan Kumar SP, Hans M, Singh AK, Kumar S (2020) The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioprod Bioref 14:830–844. https://doi.org/10.1002/bbb.2104

    CAS  Article  Google Scholar 

  2. 2.

    Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145. https://doi.org/10.1007/s00253-003-1537-7

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Fitzpatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products - Review. Bioresour Techno 101(23):8915–8922. https://doi.org/10.1016/j.biortech.2010.06.125

    CAS  Article  Google Scholar 

  4. 4.

    Soares LB, Bonan CIDG, Biazi LE, Dionísio SR, Bonatelli ML, Andrade ALD, Renzano EC, Costa AC, Ienczak JL (2020) Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass Bioenerg 137:105549. https://doi.org/10.1016/j.biombioe.2020.105549

    CAS  Article  Google Scholar 

  5. 5.

    Pauly M, Gille S, Liu L, Mansoori N, De Souza A, Schultinl A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642. https://doi.org/10.1007/s00425-013-1921-1

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Cadete RM, Rosa CA (2018) The yeasts of the genus Spathaspora: potential candidates for second-generation biofuel production. Yeast 35:191–199. https://doi.org/10.1002/yea.3279

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Rocha GJM, Martin C, Soares IB, Souto Maior AM, Baudel HM, Abreu CAM (2011) Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenerg 35:663–670. https://doi.org/10.1016/j.biombioe.2010.10.018

    CAS  Article  Google Scholar 

  8. 8.

    Zhang Z, O’Hara IM, Doherty WOS (2012) Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions (Report). Bioresour Technol 120:149–156. https://doi.org/10.1016/j.biortech.2012.06.035

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Selim KA, Easa SM, El-Diwany AI (2020) The xylose metabolizing yeast Spathaspora passalidarum is a promising genetic treasure for improving bioethanol production. Fermentation 6(1):33. https://doi.org/10.3390/fermentation6010033

    CAS  Article  Google Scholar 

  10. 10.

    Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94(1):205–214. https://doi.org/10.1007/s00253-011-3694-4

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW (2012) Cofermentation of glucose, xylose, and cellobiose by the beetleassociated yeast Spathaspora passalidarum. Appl Environ Microbiol 78(16). https://doi.org/10.1128/AEM.00374-12

  12. 12.

    Su YK, Willis LB, Jeffries TW (2015) Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 e Scheffersomyces stipitis NRRL Y-7124. Biotechnol Bioeng 112(3):457–469. https://doi.org/10.1002/bit.25445

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Bonan CIDG, Biazi LE, Dionísio SR, Soares LB, Tramontina R, Sousa AS, de Oliveira Filho CA, Costa AC, Ienczak JL (2020) Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess Biosyst Eng 43:1509–1519. https://doi.org/10.1007/s00449-020-02344-2

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Biazi LE, Martínez-Jimenez FD, Bonan CIDG, Soares LB, Morais ER, Ienczal JL, Costa AC (2020) A differential evolution approach to estimate parameters in a temperature-dependent kinetic model for second generation ethanol production under high cell density with Spathaspora passalidarum. Biochem Eng J 161:107586. https://doi.org/10.1016/j.bej.2020.107586

    CAS  Article  Google Scholar 

  15. 15.

    Neitzel T, Lima CS, Biazi LE, Collograi KC, da Costa AC, dos Santos LV, Ienczal JL (2020) Impact of the Melle-Boinot process on the enhancement of secondgeneration ethanol production by Spathaspora passalidarum. Rew Energ 160:1206–1216. https://doi.org/10.1016/j.renene.2020.07.027

    CAS  Article  Google Scholar 

  16. 16.

    Xu Y, Chi P, Bilal M (2019) Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 103:5143–5160. https://doi.org/10.1007/s00253-019-09881-

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Franceschin G, Sudiro M, Ingram T, Smirnova I, Brunner G, Bertucco A (2011) Conversion of rye straw into fuel and xylitol: a technical and economical assessment based on experimental data. Chem Eng Res Des 89:631–640. https://doi.org/10.1016/j.cherd.2010.11.001

    CAS  Article  Google Scholar 

  18. 18.

    Unrean P, Ketsub N (2018) Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Ind Crop prod 123:238–246. https://doi.org/10.1016/j.indcrop.2018.06.071

    CAS  Article  Google Scholar 

  19. 19.

    Cheng KK, Wu J, Lin ZN, Zhang JA (2014) Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol Biofuels 7:166. https://doi.org/10.1186/s13068-014-0166-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Eroma O-P, Heikkila H, Ojamo H, Sarmala P, Hyöky G, Rahkila L, Sarkki ML, Viljava T (2009) Process for the simultaneous production ofxyltol and ethanol. U S Patent 7:625–728B2

    Google Scholar 

  21. 21.

    Castañón-Rodríguez JF, Domínguez-González JM, Ortíz-Muñiz B, Torrestiana-Sanchez B, de León JAR, Aguilar-Uscanga MG (2015) Continuous multistep versus fed-batch production of ethanol and xylitol in a simulated medium of sugarcane bagasse hydrolyzates. Eng Life Sci 15:96–107. https://doi.org/10.1002/elsc.201400098

    CAS  Article  Google Scholar 

  22. 22.

    Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose fermenting yeast strains. Appl Microbiol Biotechno 74(5):937–953. https://doi.org/10.1007/s00253-006-0827-2

    CAS  Article  Google Scholar 

  23. 23.

    Wannawilai S, Lee W-C, Chisti Y, Sirisansaneeyakul S (2017) Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. J Biotechnol 241:147–157. https://doi.org/10.1016/j.jbiotec.2016.11.022

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Bekatorou A, Psarianos C, Koutinas AA (2006) Production of food grade yeasts. Food Technol Biotechnol 44(3):407–415

    Google Scholar 

  25. 25.

    Nguyen NH, Sh SO, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp nov and Candida jeffriesii sp nov. Mycol Res 110:1232–1241. https://doi.org/10.1016/j.mycres.2006.07.002

    Article  PubMed  Google Scholar 

  26. 26.

    Nakanishi SC, Soares LB, Biazi LE, Nascimento VM, Ienczak JL, Rocha GJM (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnol Bioeng 114:2211–2221. https://doi.org/10.1002/bit.26357

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Santos SC, Sousa AS, Dionísio SR, Tramontina R, Ruller R, Squina FM, Rossell CEV, Da Costa AC, Ienczak JL (2016) Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Bioresour Technol 219:319–329. https://doi.org/10.1016/j.biortech.2016.07.102

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Özalp VC, Pedersen TR, Nielsen LJ, Olsen LF (2010) Time-resolved Measurements of Intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor. J Biol Chem 285:37579–37588. https://doi.org/10.1074/jbc.M110.155119

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16(1):157. https://doi.org/10.1186/s13059-015-0721-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33(6):1635–1638. https://doi.org/10.1093/molbev/msw046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Edgar RC (2004) Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics 5(1):113. https://doi.org/10.1186/1471-2105-5-113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Barnett JA, Entian K-D (2005) A history of research on yeasts 9: regulation of sugar metabolism. Yeast 22:835–894. https://doi.org/10.1002/yea.1249

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Cadete RM, De Las Heras AM, Sandstrom AG, Ferreira C, Gírio F, Gorwa-Grauslund MF, Rosa CA, Fonseca C (2016) Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnol Biofuels 9 167: 1–14. https://doi.org/10.1186/s13068-016-0570-6

  36. 36.

    Mussatto SI, Silva CJSM, Roberto IC (2006) Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Appl Microbiol Biotechnol 72:681–686. https://doi.org/10.1007/s00253-006-0372-z

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Somsen OJ, Hoeben MA, Esgalhado E, Snoep JL, Visser D, Van der Heijden RT, Heijnen JJ, Westerhoff HV (2000) Glucose and the ATP paradox in yeast. Biochem J 352:593–599. https://doi.org/10.1042/bj3520593

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gárdonyi M, Österberg M, Rodrigues C, Spencer-Martins I, Hahn-Hägerdal B (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3(1):45–52. https://doi.org/10.1111/j.1567-1364.2003.tb00137.x

    Article  PubMed  Google Scholar 

  39. 39.

    Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B (2010) Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact 9:16. https://doi.org/10.1186/1475-2859-9-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, Labutti KM, Sun H, Clum A, Panginilan JL, Lindquist EA et al (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci USA 108(32):13212–13217. https://doi.org/10.1073/pnas.1103039108

    Article  PubMed  Google Scholar 

  41. 41.

    Veras HCT, Parachin NS, Almeida JRM (2017) Comparative assessment of fermentative capacity of diferente xylose-consuming yeasts. Microb Cell Factor 16(1):153. https://doi.org/10.1186/s12934-017-0766-x

    CAS  Article  Google Scholar 

  42. 42.

    Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell fact 7:9. https://doi.org/10.1186/1475-2859-7-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Laplace JM, Delgenes JP, Moletta R, Navarro JM (1991) Alcoholic fermentation of glucose and xylose by Pichia shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: oxygen requirement as a key factor. Appl Microbial Biotechnol 36:158–162. https://doi.org/10.1007/BF00164412

    CAS  Article  Google Scholar 

  44. 44.

    Thani A, Lin Y-H, Laopaiboon P, Laopaiboon L (2016) Variation of fermentation redox potential during cell-recycling continuous ethanol operation. J Biotechnol 239:68–75. https://doi.org/10.1016/j.jbiotec.2016.10.002

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Sigma-Aldrich® Technical Bulletin (2015) Alcohol dehydrogenase activity assay kit, published by Sigma-Aldrich®. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/mak053bul.pdf. Accessed 15 January 2021

  46. 46.

    Larroy C, Parés X, Biosca JA (2002) Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur J Biochem 269. https://doi.org/10.1046/j.1432-1033.2002.03296.x

  47. 47.

    Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111(14):5159–5164. https://doi.org/10.1073/pnas.1323464111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian Biorenewables National Laboratory/Brazilian Center of Research in Energy and Materials (LNBR/CNPEM).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Diogo Robl or Jaciane L. Ienczak.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Carolina I.D.G. Bonan and Robson Tramontina have the same contribution.

Supplementary Information

ESM 1

(DOC 478 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonan, C.I.D.G., Tramontina, R., dos Santos, M.W. et al. Biorefinery Platform for Spathaspora passalidarum NRRL Y-27907 in the Production of Ethanol, Xylitol, and Single Cell Protein from Sugarcane Bagasse. Bioenerg. Res. (2021). https://doi.org/10.1007/s12155-021-10255-7

Download citation

Keywords

  • Biofuels
  • Yeast
  • Enzymatic activity
  • Alcohol dehydrogenase
  • Biomass