Screening of Lipase-Producing Bacteria and Optimization of Lipase-Mediated Biodiesel Production from Jatropha curcas Seed Oil Using Whole Cell Approach


Biodiesel production from non-edible feedstocks, e.g., Jatropha curcas, by lipase-producing bacteria is considered a sustainable measure to reduce food versus fuel competition and dependency on fossil fuels. In this study, lipase-producing bacterial strains were isolated from soil contaminated with oil. Their biochemical and molecular identification was performed and their capacity to produce biodiesel from J. curcas seed oil was determined. Plackett-Burman and central composite designs were employed to optimize various factors for whole cell-based transesterification of J. curcas seed oil. Brevibacterium SB11 MH715025 and Pseudomonas SB15 MH715026 strains produced the highest volumetric yield of biodiesel (~ 97%). Pseudomonas SB15 MH715026 was identified as the most potent strain with the most optimum biodiesel yield on 37 °C, oil to methanol molar ratio of 1:9, and agitation at 100 rpm. Confirmation of fatty acid methyl esters was done through Fourier transform infrared spectroscopy. The infrared spectra were in the ranges 1735–1750 at cm−1 and 1300–1000 cm−1 that corresponds to C=O and C-O functional groups, respectively. The quality of biodiesel was evaluated and the fuel properties were determined for acid value, pour and cloud point, peroxide value, boiling point, and specific gravity. The values were 0.44 ± 0.1 mg potassium hydroxide (KOH)/g, 3 ± 0.1 °C, 4.1 ± 0.4 °C, 1.41 ± 0.1 milliequivalent (Meq) O2/kg, 260 ± 1 °C, and 0.87 ± 0.02 kg/m3, respectively. The fuel properties of biodiesel produced during this study were in accordance with quality standards specified by the American Society for Testing and Materials (ASTM D6751) and European Norms (EN-14103).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9



Colony-forming unit


Cetyl trimethylammonium bromide


Fatty acid methyl ester


Free fatty acids


Fourier transform infrared spectroscopy


Luria broth


Methyl red Voges-Proskauer


Optical density


Para nitrophenol


Para-nitro phenyl laurate


Revolution per minute


  1. 1.

    Hasni K, Ilham Z, Dharma S, Varman M (2017) Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. Energy Convers Manag 149:392–400.

    CAS  Article  Google Scholar 

  2. 2.

    Amini Z, Ong HC, Harrison MD, Kusumo F, Mazaheri H, Ilham Z (2017) Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers Manag 132:82–90.

    CAS  Article  Google Scholar 

  3. 3.

    Kamel DA, Farag HA, Amin NK, Zatout AA, Ali RM (2018) Smart utilization of Jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: optimization and mechanism. Ind Crop Prod 111:407–413.

    CAS  Article  Google Scholar 

  4. 4.

    Nahar K, Ozores-Hampton M (2011) Jatropha: an alternative substitute to fossil fuel. Horticultural Sciences Departments Florida: Institute of Food and Agriculture Science, University of Florida:1–9

  5. 5.

    No SY (2011) Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: a review. Renew Sust Energ Rev 15(1):131–149.

    CAS  Article  Google Scholar 

  6. 6.

    Keneni YG, Marchetti JM (2017) Oil extraction from plant seeds for biodiesel production. AIMS Energy 5(2):316–340.

    CAS  Article  Google Scholar 

  7. 7.

    Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100(1):261–268.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Haq A, Siddiqi M, Batool SZ, Islam A, Khan A, Khan D, Khan S, Khan H, Shah AA, Hasan F (2019) Comprehensive investigation on the synergistic antibacterial activities of Jatropha curcas pressed cake and seed oil in combination with antibiotics. AMB Express 9(1):67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sai BA, Subramaniapillai N, Mohamed MSBK, Narayanan A (2020) Optimization of continuous biodiesel production from rubber seed oil (RSO) using calcined eggshells as heterogeneous catalyst. J Environ Chem Eng 8(1):103603.

    CAS  Article  Google Scholar 

  10. 10.

    Krishnamurthy K, Sridhara S, Kumar CA (2018) Synthesis and optimization of Hydnocarpus wightiana and dairy waste scum as feed stock for biodiesel production by using response surface methodology. Energy 153:1073–1086.

    Article  Google Scholar 

  11. 11.

    Sirisha E, Rajasekar N, Narasu ML (2010) Isolation and optimization of lipase producing bacteria from oil contaminated soils. Adv Biol Res (Rennes) 4(5):249–252

    CAS  Google Scholar 

  12. 12.

    ul ain Rana Q, Rehman MLU, Irfan M, Ahmed S, Hasan F, Shah AA, Khan S, Badshah M (2019) Lipolytic bacterial strains mediated transesterification of non-edible plant oils for generation of high quality biodiesel. J Biosci Bioeng 127 (5):609–617.

  13. 13.

    Unni KN, Priji P, Sajith S, Faisal PA, Benjamin S (2016) Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase. Biologia 71(4):378–387.

    CAS  Article  Google Scholar 

  14. 14.

    Snellman EA, Sullivan ER, Colwell RR (2002) Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur J Biochem 269(23):5771–5779.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5.

    CAS  Article  Google Scholar 

  16. 16.

    Amini Z, Ilham Z, Ong HC, Mazaheri H, Chen W-H (2017) State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers Manag 141:339–353.

    CAS  Article  Google Scholar 

  17. 17.

    Sun T, Du W, Zeng J, Dai L, Liu D (2010) Exploring the effects of oil inducer on whole cell-mediated methanolysis for biodiesel production. Process Biochem 45(4):514–518.

    CAS  Article  Google Scholar 

  18. 18.

    Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64(6):763–781.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7(1):487.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Goodfellow M, Kämpfer P, Busse H, Trujillo M, Suzuki K, Ludwig W, Whitman W (2012) Bergey’s manual of systematic bacteriology, the Actinobacteria, part A, 2nd edn, vol. 5. London: Springer

  21. 21.

    Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 56(1):2.4. 1–2.4. 5.

    Article  Google Scholar 

  22. 22.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  25. 25.

    Gahlaut A, Chhillar AK (2013) Evaluation of antibacterial potential of plant extracts using resazurin based microtiter dilution assay. Int J Pharm Pharm Sci 5(2):372–376

    Google Scholar 

  26. 26.

    Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Giordano PC, Beccaria AJ, Goicoechea HC (2011) Significant factors selection in the chemical and enzymatic hydrolysis of lignocellulosic residues by a genetic algorithm analysis and comparison with the standard Plackett-Burman methodology. Bioresour Technol 102(22):10602–10610.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Mehta BM, Darji V, Aparnathi K (2015) Comparison of five analytical methods for the determination of peroxide value in oxidized ghee. Food Chem 185:449–453.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Onukwuli DO, Emembolu LN, Ude CN, Aliozo SO, Menkiti MC (2017) Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt J Petrol 26(1):103–110.

    Article  Google Scholar 

  30. 30.

    Society AOC (1988) Official and tentative methods, vol 1

  31. 31.

    Polyak YM, Bakina LG, Chugunova MV, Mayachkina NV, Gerasimov AO, Bure VM (2018) Effect of remediation strategies on biological activity of oil-contaminated soil-a field study. Int Biodeterior Biodegradation 126:57–68.

    CAS  Article  Google Scholar 

  32. 32.

    Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JA (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12(10):409–415.

    CAS  Article  Google Scholar 

  33. 33.

    Ohtani M, Nakano Y, Sano R, Kurata T, Demura T (2017) Toxic substances in Jatropha seeds: Biosynthesis of the most problematic compounds, phorbol esters. In: The Jatropha Genome. Springer, pp 97–111

  34. 34.

    Zarevúcka M (2012) Olive oil as inductor of microbial lipase. Olive Oil-Constituents, Quality, Health Properties and Bioconversions, InTech Europe, Rijeka, Croatia:457–470

  35. 35.

    Lin J, Gan L, Chen Z, Naidu R (2015) Biodegradation of tetradecane using Acinetobacter venetianus immobilized on bagasse. Biochem Eng 100:76–82.

    CAS  Article  Google Scholar 

  36. 36.

    Czarny J, Staninska-Pięta J, Piotrowska-Cyplik A, Juzwa W, Wolniewicz A, Marecik R (2020) Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals. J Hazard Mater 383:121168.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Yang R, Zhang G, Li S, Moazeni F, Li Y, Wu Y, Zhang W, Chen T, Liu G, Zhang B (2019) Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms. Environ Sci Pollut Res 26(2):1834–1847.

    CAS  Article  Google Scholar 

  38. 38.

    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Musa IA (2016) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet 25(1):21–31.

    Article  Google Scholar 

  40. 40.

    Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42(15):6290–6307.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Muanruksa P, Kaewkannetra P (2020) Combination of fatty acids extraction and enzymatic esterification for biodiesel production using sludge palm oil as a low-cost substrate. Renew Energy 146:901–906.

    CAS  Article  Google Scholar 

  42. 42.

    Suwanno S, Rakkan T, Yunu T, Paichid N, Kimtun P, Prasertsan P, Sangkharak K (2017) The production of biodiesel using residual oil from palm oil mill effluent and crude lipase from oil palm fruit as an alternative substrate and catalyst. Fuel 195:82–87.

    CAS  Article  Google Scholar 

  43. 43.

    Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G (2004) Biodiesel production technology. NREL1617:80401-83393

  44. 44.

    Modi MK, Reddy J, Rao B, Prasad R (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98(6):1260–1264.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Devanesan M, Viruthagiri T, Sugumar N (2007) Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. Afr J Biotechnol 6(21):2497–2501.

    CAS  Article  Google Scholar 

  46. 46.

    Xie W, Wang J (2014) Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energ Fuel 28(4):2624–2631.

    CAS  Article  Google Scholar 

  47. 47.

    Satti SM, Abbasi AM, Marsh TL, Auras R, Hasan F, Badshah M, Farman M, Shah AA (2019) Statistical optimization of lipase production from Sphingobacterium sp. strain S2 and evaluation of enzymatic depolymerization of poly (lactic acid) at mesophilic temperature. Polym Degrad Stabil 160:1–13.

    CAS  Article  Google Scholar 

  48. 48.

    Xie W, Zang X (2018) Lipase immobilized on ionic liquid-functionalized magnetic silica composites as a magnetic biocatalyst for production of trans-free plastic fats. Food Chem 257:15–22.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Xie W, Huang M (2018) Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Convers Manag 159:42–53.

    CAS  Article  Google Scholar 

  50. 50.

    Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy 1 (1):57–66

  51. 51.

    Bornscheuer U (2006) Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71(1):13–22

    Article  Google Scholar 

  52. 52.

    Rabu RA, Janajreh I, Honnery D (2013) Transesterification of waste cooking oil: process optimization and conversion rate evaluation. Energy Convers Manag 65:764–769.

    CAS  Article  Google Scholar 

  53. 53.

    Ong H, Mahlia T, Masjuki H, Norhasyima R (2011) Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew Sust Energ Rev 15(8):3501–3515.

    CAS  Article  Google Scholar 

  54. 54.

    Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J (2009) Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur J Sci Res 29(3):396–403

    Google Scholar 

Download references


This study is part of NRPU project (6195/Federal/NRPU/R&D/HEC/2016). The financial support to accomplish this research by the Higher Education Commission of Pakistan and Quaid-i-Azam University, Islamabad, is greatly acknowledged. AH was supported by postgraduate fellowship from the Higher Education Commission of Pakistan.

Author information



Corresponding author

Correspondence to Malik Badshah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 1911 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haq, A., Adeel, S., Khan, A. et al. Screening of Lipase-Producing Bacteria and Optimization of Lipase-Mediated Biodiesel Production from Jatropha curcas Seed Oil Using Whole Cell Approach. Bioenerg. Res. (2020).

Download citation


  • Fuel properties
  • Transesterification
  • Plackett-Burman
  • Central composite
  • Response surface model
  • Fatty acid methyl esters