Light Intensity Improves Growth, Lipid Productivity, and Fatty Acid Profile of Chlorococcum oleofaciens (Chlorophyceae) for Biodiesel Production

A Correction to this article was published on 01 September 2020

This article has been updated

Abstract

The present study was aimed to consider the effect of light intensity on the growth and lipid accumulation properties of a freshwater microalga Chlorococcum oleofaciens KF584224.1. The microalga was cultivated at five different light intensities of 50, 100, 200, 400, and 800 μmol photons m−2 s−1 for 20 days. The culture curves illustrated the fastest growth rate for microalgae illuminated with 200 μmol photons m−2 s−1, while the longest exponential growth curve was obtained in culture illuminated with 400 μmol photons m−2 s−1. Once algae reached the stationary phase, the maximum biomass productivity (367.82 ± 21.63 mg L−1 day−1) was found in culture illuminated with 200 μmol photons m−2 s−1, while the highest lipid content (59.18 ± 1.62%) and lipid productivity (126.72 ± 3.27 mg L−1 day−1) were achieved in culture illuminated with 400 μmol photons m−2 s−1. The ratio of saturated fatty acids significantly increased with enhancing light illumination, while the ratio of monounsaturated fatty acids and polyunsaturated fatty acids tend to decline (p < 0.05). The properties of biodiesel obtained from C. oleofaciens cultured under 50 μmol photons m−2 s−1 met the specifications provided by the international biodiesel standards (European EN 14214 and US ASTM D6751), higher light illumination improved the biodiesel quality. Findings of the present study demonstrated that light intensity could improve the lipid productivity and biodiesel properties obtained from C. oleofaciens as a potential feedstock for biofuel production, especially under 400 μmol photons m−2 s−1 light intensity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 01 September 2020

    The original version of this article unfortunately contained incorrect data in Fig. 2 caption.

References

  1. 1.

    Kiran B, Kumar R, Deshmukh D (2014) Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers Manag 88:1228–1244. https://doi.org/10.1016/j.enconman.2014.06.022

    CAS  Article  Google Scholar 

  2. 2.

    Cagliari A, Margis R, Maraschin FS, Turchetto-Zolet AC, Loss G, Margis-Pinheiro M (2011) Biosynthesis of triacylglycerols (TAGs) in plants and algae. Int J Plant Biol 2(1):40–52. https://doi.org/10.4081/pb.2011.e10

  3. 3.

    Francisco ÉC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85(3):395–403. https://doi.org/10.1002/jctb.2338

    CAS  Article  Google Scholar 

  4. 4.

    Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, Méndez-Zavala A, Montañez J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol Rep 10:117–125. https://doi.org/10.1016/j.btre.2016.04.001

  5. 5.

    Wu H (2016) Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). Biomed Res Int 2016:7383918–7383918. https://doi.org/10.1155/2016/7383918

    CAS  Article  Google Scholar 

  6. 6.

    Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444. https://doi.org/10.1016/j.rser.2015.05.024

    CAS  Article  Google Scholar 

  7. 7.

    Mulders KJM, Lamers PP, Martens DE, Wijffels RH (2014) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50(2):229–242. https://doi.org/10.1111/jpy.12173

    CAS  Article  Google Scholar 

  8. 8.

    Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467. https://doi.org/10.1016/j.apenergy.2012.10.004

    CAS  Article  Google Scholar 

  9. 9.

    Del Río E, Armendáriz A, García-Gómez E, García-González M, Guerrero MG (2015) Continuous culture methodology for the screening of microalgae for oil. J Biotechnol 195:103–107. https://doi.org/10.1016/j.jbiotec.2014.12.024

    CAS  Article  Google Scholar 

  10. 10.

    Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol 155:204–212. https://doi.org/10.1016/j.biortech.2013.12.109

    CAS  Article  Google Scholar 

  11. 11.

    Li T, Wan L, Li A, Zhang C (2013) Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations. Chin J Oceanol Limnol 31(6):1306–1314. https://doi.org/10.1007/s00343-013-2316-7

    CAS  Article  Google Scholar 

  12. 12.

    Kawasaki Y, Nakada T, Tomita M (2015) Taxonomic revision of oil-producing green algae, Chlorococcum oleofaciens (Volvocales, Chlorophyceae), and its relatives. J Phycol 51(5):1000–1016. https://doi.org/10.1111/jpy.12343

    CAS  Article  Google Scholar 

  13. 13.

    Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour Technol 131:188–194. https://doi.org/10.1016/j.biortech.2012.12.143

    CAS  Article  Google Scholar 

  14. 14.

    Rajabi Islami H, Assareh R (2020) Enhancement effects of ferric ion concentrations on growth and lipid characteristics of freshwater microalga Chlorococcum oleofaciens KF584224.1 for biodiesel production. Renew Energy 149:264–272. https://doi.org/10.1016/j.renene.2019.12.067

    CAS  Article  Google Scholar 

  15. 15.

    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    CAS  Article  Google Scholar 

  16. 16.

    Rai MP, Nigam S, Sharma R (2013) Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy 58:251–257. https://doi.org/10.1016/j.biombioe.2013.08.038

    CAS  Article  Google Scholar 

  17. 17.

    Kunrunmi O, Adesalu T, Kumar S (2017) Genetic identification of new microalgal species from Epe Lagoon of West Africa accumulating high lipids. Algal Res 22:68–78. https://doi.org/10.1016/j.algal.2016.12.009

    Article  Google Scholar 

  18. 18.

    Gonçalves AL, Simões M, Pires JCM (2014) The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Convers Manag 85:530–536. https://doi.org/10.1016/j.enconman.2014.05.085

    CAS  Article  Google Scholar 

  19. 19.

    Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410. https://doi.org/10.1016/j.apenergy.2010.12.014

    CAS  Article  Google Scholar 

  20. 20.

    Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252. https://doi.org/10.1016/j.biortech.2011.11.133

    CAS  Article  Google Scholar 

  21. 21.

    Wahidin S, Idris A, Shaleh SRM (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129:7–11. https://doi.org/10.1016/j.biortech.2012.11.032

    CAS  Article  Google Scholar 

  22. 22.

    Loera Quezada MM, Angeles G, Olguín EJ (2017) Effect of irradiance on the cell density, size and lipid accumulation of Neochloris oleoabundans. Rev Latinoam Biotecnol Amb Algal 2(2):81–92

  23. 23.

    Sørensen B (2017) 5 - energy transmission and storage. In: Sørensen B (ed) Renewable energy (Fifth Edition). Academic Press, Boston, pp 569–646. doi:https://doi.org/10.1016/B978-0-12-804567-1.00005-0

  24. 24.

    Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24(5):989–1001. https://doi.org/10.1007/s10811-011-9723-y

    CAS  Article  Google Scholar 

  25. 25.

    Rai MP, Gupta S (2017) Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans. Energy Convers Manag 141:85–92. https://doi.org/10.1016/j.enconman.2016.05.018

    CAS  Article  Google Scholar 

  26. 26.

    BenMoussa-Dahmen I, Chtourou H, Rezgui F, Sayadi S, Dhouib A (2016) Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production. Bioresour Technol 218:816–825. https://doi.org/10.1016/j.biortech.2016.07.022

    CAS  Article  Google Scholar 

  27. 27.

    Ashour M, Elshobary ME, El-Shenody R, Kamil A-W, Abomohra AE-F (2019) Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass Bioenergy 120:439–447. https://doi.org/10.1016/j.biombioe.2018.12.009

    CAS  Article  Google Scholar 

  28. 28.

    Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60(1):239–260. https://doi.org/10.1146/annurev.arplant.58.032806.103844

    CAS  Article  Google Scholar 

  29. 29.

    Bastien O, Botella C, Chevalier F, Block MA, Jouhet J, Breton C, Girard-Egrot A, Maréchal E (2016) Chapter one - new insights on thylakoid biogenesis in plant cells. In: Jeon KW (ed) International review of cell and molecular biology, vol 323. Academic press, pp 1–30. https://doi.org/10.1016/bs.ircmb.2015.12.001

  30. 30.

    Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16(1):53–60. https://doi.org/10.1016/j.tplants.2010.10.001

    CAS  Article  Google Scholar 

  31. 31.

    Faried M, Samer M, Abdelsalam E, Yousef RS, Attia YA, Ali AS (2017) Biodiesel production from microalgae: processes, technologies and recent advancements. Renew Sust Energ Rev 79:893–913. https://doi.org/10.1016/j.rser.2017.05.199

    Article  Google Scholar 

  32. 32.

    Maity JP, Bundschuh J, Chen C-Y, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy 78:104–113. https://doi.org/10.1016/j.energy.2014.04.003

    CAS  Article  Google Scholar 

  33. 33.

    Heldt H-W, Piechulla B (2011) 15 - lipids are membrane constituents and function as carbon stores. In: Heldt H-W, Piechulla B (eds) Plant biochemistry (Fourth Edition). Academic Press, San Diego, pp 359–398. doi:https://doi.org/10.1016/B978-0-12-384986-1.00015-6

  34. 34.

    Difusa A, Talukdar J, Kalita MC, Mohanty K, Goud VV (2015) Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. Biofuels 6(1–2):37–44. https://doi.org/10.1080/17597269.2015.1045274

    CAS  Article  Google Scholar 

  35. 35.

    Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17(2):61–66. https://doi.org/10.1016/0968-0004(92)90503-2

    CAS  Article  Google Scholar 

  36. 36.

    Sibi G, Shetty V, Mokashi K (2016) Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels – a review. J Energy Inst 89(3):330–334. https://doi.org/10.1016/j.joei.2015.03.008

    CAS  Article  Google Scholar 

  37. 37.

    Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507. https://doi.org/10.1007/s10811-008-9392-7

    CAS  Article  Google Scholar 

  38. 38.

    Christou M, Alexopoulou E, Cosentino SL, Copani V, Nogues S, Sanchez E, Monti A, Zegada-Lizarazu W, Pari L, Scarfone A (2018) 4 - Giant reed: from production to end use. In: Alexopoulou E (ed) Perennial grasses for bioenergy and bioproducts. Academic press, Cambridge, pp 107–151. https://doi.org/10.1016/B978-0-12-812900-5.00004-7

    Google Scholar 

  39. 39.

    Tan KWM, Lee YK (2016) The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnol Biofuels 9:255–255. https://doi.org/10.1186/s13068-016-0671-2

  40. 40.

    Kim DW, Shin W-S, Sung M-G, Lee B, Chang YK (2019) Light intensity control as a strategy to improve lipid productivity in Chlorella sp. HS2 for biodiesel production. Biomass Bioenergy 126:211–219. https://doi.org/10.1016/j.biombioe.2019.05.014

    CAS  Article  Google Scholar 

  41. 41.

    Nascimento IA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Vich DV, de Carvalho GC, Nascimento MA (2013) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res 6(1):1–13. https://doi.org/10.1007/s12155-012-9222-2

  42. 42.

    Wacker A, Piepho M, Harwood JL, Guschina IA, Arts MT (2016) Light-induced changes in fatty acid profiles of specific lipid classes in several freshwater phytoplankton species. Front Plant Sci 7:264–264. https://doi.org/10.3389/fpls.2016.00264

    Article  Google Scholar 

  43. 43.

    Amini Khoeyi Z, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20(1):41–49. https://doi.org/10.1007/s10499-011-9440-1

    CAS  Article  Google Scholar 

  44. 44.

    Kumar G, Nguyen DD, Huy M, Sivagurunathan P, Bakonyi P, Zhen G, Kobayashi T, Xu KQ, Nemestóthy N, Chang SW (2019) Effects of light intensity on biomass, carbohydrate and fatty acid compositions of three different mixed consortia from natural ecological water bodies. J Environ Manag 230:293–300. https://doi.org/10.1016/j.jenvman.2018.09.026

    CAS  Article  Google Scholar 

  45. 45.

    Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5(5):1532–1553. https://doi.org/10.3390/en5051532

    CAS  Article  Google Scholar 

  46. 46.

    Richmond A (2013) Biological principles of mass cultivation. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. CRC Press, Blackwell Publishing Company, Oxford, pp 169–204. https://doi.org/10.1002/9780470995280.ch8

    Google Scholar 

  47. 47.

    Rochaix J-D (2011) Regulation of photosynthetic electron transport. BBA- Bioenergetics 1807(3):375–383. https://doi.org/10.1016/j.bbabio.2010.11.010

  48. 48.

    Bhatia SC (2014) 22 - Biodiesel. In: Bhatia SC (ed) Advanced renewable energy systems. Woodhead publishing India, New Delhi, pp 573–626. https://doi.org/10.1016/B978-1-78242-269-3.50022-X

    Google Scholar 

  49. 49.

    Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2(7):759–766. https://doi.org/10.1039/B903941D

    CAS  Article  Google Scholar 

  50. 50.

    Oromí-Farrús M, Villorbina G, Eras J, Gatius F, Torres M, Canela R (2010) Determination of the iodine value of biodiesel using 1H NMR with 1,4-dioxane as an internal standard. Fuel 89(11):3489–3492. https://doi.org/10.1016/j.fuel.2010.06.016

    CAS  Article  Google Scholar 

  51. 51.

    Singh B, Guldhe A, Rawat I, Bux F (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sust Energ Rev 29:216–245. https://doi.org/10.1016/j.rser.2013.08.067

    CAS  Article  Google Scholar 

  52. 52.

    Gopinath A, Puhan S, Nagarajan G (2009) Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition. Renew Energy 34(7):1806–1811. https://doi.org/10.1016/j.renene.2008.11.023

    CAS  Article  Google Scholar 

  53. 53.

    Anahas AMP, Muralitharan G (2018) Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers Manag 157:423–437. https://doi.org/10.1016/j.enconman.2017.12.012

    CAS  Article  Google Scholar 

  54. 54.

    Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85(12):1666–1670. https://doi.org/10.1016/j.fuel.2006.03.003

    CAS  Article  Google Scholar 

  55. 55.

    Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070. https://doi.org/10.1016/j.fuproc.2004.11.002

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Conceptualization: Houman Rajabi Islami; alga purification and identification: Houman Rajabi Islami; formal analysis and investigation: Marzie Rayati and Mehdi Shamsaie; writing of the first draft of the manuscript: Marzie Rayati; writing of the final version of the manuscript: Houman Rajabi Islami; supervision: Houman Rajabi Islami. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Houman Rajabi Islami.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Statement

All the protocols and procedures employed in the current experiment were performed according to the standard guidelines for the care and use of experimental organisms by Islamic Azad University, Science and Research Branch, and have been approved by the committee on ethics matched biomedical researchers.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Incorrect data in Fig. 2 caption.

Electronic supplementary material

ESM 1

(PDF 530 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rayati, M., Rajabi Islami, H. & Shamsaie Mehrgan, M. Light Intensity Improves Growth, Lipid Productivity, and Fatty Acid Profile of Chlorococcum oleofaciens (Chlorophyceae) for Biodiesel Production. Bioenerg. Res. 13, 1235–1245 (2020). https://doi.org/10.1007/s12155-020-10144-5

Download citation

Keywords

  • Biofuel
  • Biomass
  • Growth
  • Lipid
  • Microalga