Skip to main content

Advertisement

Log in

Life Cycle Assessment of Bioethanol Production from Sweet Potato (Ipomoea batatas L.) in an Experimental Plant

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

First-generation bioethanol production from fermentation is a widely applied technology, with the United States of America and Brazil being the global leaders. However, several concerns regarding the widespread production of biofuels have arisen, particularly its environmental impacts. To address this issue, this study details the environmental impacts of the production of fist-generation bioethanol from sweet potato (Ipomoea batatas L.) in a pilot scale facility, using the Life Cycle Assessment (LCA) methodology. Cultivation and transformation of sweet potato into bioethanol are considered in the system boundaries. The background data for the life cycle inventory were mainly obtained from the Ecoinvent 3.1 database and considered both literature and field data. The SimaPro software was used to perform the impact assessment considering the CML IA baseline 3.02 method. Three different agricultural waste scenarios are also considered and compared to evaluate the best-case scenarios. In addition, sensitivity analysis and comparison with other similar studies are thoroughly explored. Overall, the analyzed production system has lower impacts than indicated in similar studies, but considering its pilot scale, improvement of its environmental impacts is necessary, which might be addressed with larger scale and centralized support systems regarding transportation and other aspects. Based on the results, several recommendations to decrease environmental impacts are also listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acheampong et al (2017) In pursuit of sustainable development goal (SDG) number 7: will biofuels be reliable? Renew Sust Energ Rev 75:927–937. https://doi.org/10.1016/j.rser.2016.11.074

    Article  Google Scholar 

  2. Arapoglou et al (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902. https://doi.org/10.1016/j.wasman.2010.04.017

    Article  PubMed  CAS  Google Scholar 

  3. Bennertz, Rip (2018) The evolving Brazilian automotive-energy infrastructure: entanglements of national developmentalism, sugar and ethanol production, automobility and gasoline. Energy Research & Social Science 41:109–117. https://doi.org/10.1016/j.erss.2018.04.022

    Article  Google Scholar 

  4. Brown, Sovacool BK (2011) Brazil’s proalcohol program and promotion offlex-fuel vehicles, In: MIT Press (Ed.), Climate change and global energy security: technology and policy options, Cambridge, pp. 260–274

  5. Clavreul et al (2012) Quantifying uncertainty in LCA-modelling of waste management systems. Waste Manag 32:2482–2495. https://doi.org/10.1016/j.wasman.2012.07.008

    Article  PubMed  Google Scholar 

  6. CML-IE (2016) (Institute of Environmental Sciences/Department of Industrial Ecology). CML-IA Characterisation Factors. Retrieved from: http://cml.leiden.edu/software/data-cmlia.html Access date: 07.10.17

  7. Council Directive (EU) 2015/652. Council Directive (EU) 2015/652 of 20 April 2015 laying down calculation methods and reporting requirements pursuant to Directive 98/70/EC of the European Parliament and of the Council relating to the quality of petrol and diesel fuels. European Union

  8. Directive 2009/28/EC, Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance) Official Journal of the European Union, pp. 16–62

  9. Duffield et al. (2015) U.S. ethanol: an examination of policy, production, use, distribution, and market interactions. 87

  10. Dunn et al (2012) Energy consumption and greenhouse gas emissions from enzyme and yeast manufacture for corn and cellulosic ethanol production. Biotechnol Lett 34:2259–2263. https://doi.org/10.1007/s10529-012-1057-6

    Article  PubMed  CAS  Google Scholar 

  11. EPA (Unites States Environmental Protection Agency) (1994) Emission Factor Documentation for AP-42: Section 9.2.2 - Section 9.2.2. EPA, USA

  12. EPE (Empresa de Pesquisa Energética) (2017) Brazilian Energy Balance Brazil

  13. FAOSTAT (Food and Agriculture Organization Corporate Statistical Database) (2017) Crops. Retrieved from: http://www.fao.org/faostat/en/#home. Access date: 07.09.17

  14. Feedpedia (Animal Feed Resources Information System) (2017) Wheat distillers grain. Retrieved from: https://www.feedipedia.org/node/4265. Access date: 08.09.17

  15. Hall et al (2009) Brazilian biofuels and social exclusion: established and concentrated ethanol versus emerging and dispersed biodiesel. J Clean Prod 17:S77–S85. https://doi.org/10.1016/j.jclepro.2009.01.003

    Article  Google Scholar 

  16. Heijungs, Kleijn (2001) Numerical approaches towards life cycle interpretation—five examples. Int J Life Cycle Assess 6:141–148. https://doi.org/10.1065/Ica2000.12.045

    Article  CAS  Google Scholar 

  17. Heijungs et al (2005) Numerical approaches to life cycle interpretation—the case of the Ecoinvent’96 database (10 pp). Int J Life Cycle Assess 10:103–112. https://doi.org/10.1065/lca2004.06.161

    Article  Google Scholar 

  18. IEA (International Energy Agency) (2016) World Energy Outlook 2016. OECD/IEA, France

    Book  Google Scholar 

  19. IPCC, 2006. N2O emissions from managed soils, and co2 emissions from lime and urea application, 2006 IPCC Guidelines for National Greenhouse Gas Inventories

    Google Scholar 

  20. ISO 14040 (2006) (International Organization for Standardization). Environmental management—life cycle assessment—principles and framework. ISO 14040:2006 ISO 14040:2006

  21. La Rovere et al (2011) Biofuels and sustainable energy development in Brazil. World Dev 39:1026–1036. https://doi.org/10.1016/j.worlddev.2010.01.004

    Article  Google Scholar 

  22. Lareo et al (2013) Evaluation of sweet potato for fuel bioethanol production: hydrolysis and fermentation. SpringerPlus 2:493. https://doi.org/10.1186/2193-1801-2-493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lehtonen (2011) Social sustainability of the Brazilian bioethanol: power relations in a centre-periphery perspective. Biomass Bioenergy 35:2425–2434. https://doi.org/10.1016/j.biombioe.2009.05.027

    Article  Google Scholar 

  24. Lima et al (2000) Solo e aptidão das terras do Estado de Tocantins. EMPRAPA, Brazil

    Google Scholar 

  25. Milà i Canals et al (2013) Land use impact assessment of margarine. Int J Life Cycle Assess 18:1265–1277. https://doi.org/10.1007/s11367-012-0380-4

    Article  CAS  Google Scholar 

  26. Muñoz et al (2014) Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int J Life Cycle Assess 19:109–119. https://doi.org/10.1007/s11367-013-0613-1

    Article  CAS  Google Scholar 

  27. Nemecek T, Kägi T (2007) Life cycle inventories of agricultural production systems. E. Centre. Zürick and Dübendorf, Ecoinvent Centre

  28. Nielsen et al (2007) Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S. Int J Life Cycle Assess 12:432–438. https://doi.org/10.1065/lca2006.08.265.1

    Article  CAS  Google Scholar 

  29. Oliveira et al (2007) Produção da batata-doce adubada com esterco bovino e biofertilizante. Ciênc Agrotecnol 31:1722–1728. https://doi.org/10.1590/S1413-70542007000600018

    Article  Google Scholar 

  30. Pianosi et al (2016) Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ Model Softw 79:214–232. https://doi.org/10.1016/j.envsoft.2016.02.008

    Article  Google Scholar 

  31. Rathnayake et al (2018) Process simulation based life cycle assessment for bioethanol production from cassava, cane molasses, and rice straw. J Clean Prod 190:24–35. https://doi.org/10.1016/j.jclepro.2018.04.152

    Article  CAS  Google Scholar 

  32. RFA (Renewable Fuels Association) (2015) 2016 Ethanol industry outlook. USA

  33. Rosenbaum et al (2015) The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. Int J Life Cycle Assess 20:765–776. https://doi.org/10.1007/s11367-015-0871-1

    Article  CAS  Google Scholar 

  34. Rosillo-Calle, et al. (2008) The biomass assessment handbook. Earthscan, United Kigndom, p. 296

  35. Saltelli et al (2006) Sensitivity analysis practices: strategies for model-based inference. Reliab Eng Syst Saf 91:1109–1125. https://doi.org/10.1016/j.ress.2005.11.014

    Article  Google Scholar 

  36. Silva et al (2008) Batata-doce (Ipomoea batatas). Empresa Brasileira de Pesquisa Agropecuária (EMPRAPA), Brazil

    Google Scholar 

  37. Silva, et al (1995) Cultivo da batata-doce (Ipomoea batatas (L.) Lam). EMBRAPA-CNPH. Instruções técnicas da Embrapa Hortalicas, 7Empresa Brasileira de Pesquisa Agropecuária (EMPRAPA), Brasília

  38. Silveira et al (2008) A cultura da batata-doce como fonte de matéria prima para o etanol. Universidade Federal do Tocantis/Ministério da Ciência e Tecnologia, Palmas

    Google Scholar 

  39. Sovacool (2016) How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Research & Social Science 13:202–215. https://doi.org/10.1016/j.erss.2015.12.020

    Article  Google Scholar 

  40. Stattman et al (2013) Governing biofuels in Brazil: a comparison of ethanol and biodiesel policies. Energy Policy 61:22–30. https://doi.org/10.1016/j.enpol.2013.06.005

    Article  Google Scholar 

  41. Swain et al (2013) Bioethanol production from sweet potato (Ipomoea batatas L.) flour using co-culture of Trichoderma sp. and Saccharomyces cerevisiae in solid-state fermentation. Braz Arch Biol Technol 56:171–179. https://doi.org/10.1590/S1516-89132013000200002

    Article  CAS  Google Scholar 

  42. Thumé et al (2013) Níveis críticos foliares de nutrientes de três cultivares de batata-doce, selecionados para a produção de etanol. Revista Ceres 60:863–875. https://doi.org/10.1590/S0034-737X2013000600015

    Article  Google Scholar 

  43. Unal, Alibas (2007) Agricultural residues as biomass energy. Energy Sources, Part B: Economics, Planning, and Policy 2:123–140. https://doi.org/10.1080/15567240600629401

    Article  CAS  Google Scholar 

  44. Virgínio e Silva et al (2017) Integrated production of biodiesel and bioethanol from sweet potato. Renew Energy 124:114–120. https://doi.org/10.1016/j.renene.2017.07.052

    Article  CAS  Google Scholar 

  45. Wang et al (2016) An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnol Biofuels 9:50. https://doi.org/10.1186/s13068-016-0464-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang et al (2013) Life-cycle energy efficiency and environmental impacts of bioethanol production from sweet potato. Bioresour Technol 133:285–292. https://doi.org/10.1016/j.biortech.2013.01.067

    Article  PubMed  CAS  Google Scholar 

  47. Wernet et al (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218–1230. https://doi.org/10.1007/s11367-016-1087-8

    Article  Google Scholar 

  48. Zhang et al (2017) Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes. PLoS One 12:e0180685. https://doi.org/10.1371/journal.pone.0180685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Costa.

Electronic supplementary material

ESM 1

(DOCX 25.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, D., Jesus, J., Virgínio e Silva, J. et al. Life Cycle Assessment of Bioethanol Production from Sweet Potato (Ipomoea batatas L.) in an Experimental Plant. Bioenerg. Res. 11, 715–725 (2018). https://doi.org/10.1007/s12155-018-9932-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9932-1

Keywords

Navigation