Skip to main content
Log in

Effect of Urea on the Enzymatic Hydrolysis of Lignocellulosic Substrate and Its Mechanism

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Effect of hydrogen bond breaker (urea) addition on the enzymatic hydrolysis of Avicel and eucalyptus pretreated by dilute acid (Eu-DA) was investigated. Urea enhanced the enzymatic hydrolysis of Eu-DA at 50 or 30 °C when the concentration of urea was below 60 g/L, while it inhibited the hydrolysis of Avicel. Low concentration urea (< 240 g/L) had little effect on the cellulase spatial structure and its activity. But it decreased cellulase binding to cellulose surface to inhibit the cellulose hydrolysis. Meanwhile, urea obviously prevented the adsorption of cellobiohydrolase I (CBHI) on the lignin in spite of little effect on the adsorption of β-glucosidase (BGL) and two endoglucanases (EGIII and EGV) on lignin. It was proposed that urea enhanced the enzymatic efficiency of Eu-DA by decreasing the cellulase adsorption on lignin surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467. https://doi.org/10.1016/j.pecs.2012.03.002

    Article  CAS  Google Scholar 

  2. Somerville C, Youngs H, Taylor C, Davis SC, Long P (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–791. https://doi.org/10.1126/science.1189268

    Article  CAS  PubMed  Google Scholar 

  3. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2(1):26–40. https://doi.org/10.1002/bbb.49

    Article  CAS  Google Scholar 

  4. Agrawal R, Gaur R, Mathur A, Kumar R, Gupta RP, Tuli DK, Satlewal A (2015) Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes. RSC Adv 5(87):71462–71471. https://doi.org/10.1039/c5ra13360b

    Article  CAS  Google Scholar 

  5. Gao D, Haarmeyer C, Balan V, Whitehead TA, Dale BE, Chundawat SP (2014) Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol Biofuels 7:175. https://doi.org/10.1186/s13068-014-0175-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. BioEnergy Res 3(1):82–92. https://doi.org/10.1007/s12155-009-9067-5

    Article  Google Scholar 

  7. Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103(1):201–208. https://doi.org/10.1016/j.biortech.2011.09.091

    Article  CAS  PubMed  Google Scholar 

  8. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Method Enzymol 160:87–112

    Article  CAS  Google Scholar 

  9. Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726. https://doi.org/10.1038/nbt0885-722.

    Article  CAS  Google Scholar 

  10. Gupta R, Lee YY (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 102(6):1570–1581. https://doi.org/10.1002/bit.22195

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y-HP, Himmel M, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003

    Article  CAS  Google Scholar 

  12. Sinnott M (1990) Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev 90(7):1171–1202. https://doi.org/10.1021/cr00105a006

  13. Himmel ME, Ding SY, Johnson DK, Adney WS, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. https://doi.org/10.1126/science.1137016

    Article  CAS  PubMed  Google Scholar 

  14. Guo FF, Shi WJ, Sun W, Li XZ, Wang FF, Zhao J, Qu YB (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol Biofuels 7:38. https://doi.org/10.1186/1754-6834-7-38

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qin CG, Clarke K, Li KC (2014) Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol Biofuels 7:65. https://doi.org/10.1186/1754-6834-7-65

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31(2002):353–364. https://doi.org/10.1016/S0141-0229(02)00134-5

  17. Lou H, Zhu JY, Lan TQ, Lai H, Qiu X (2013) pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocellulose. ChemSusChem 6(5):919–927. https://doi.org/10.1002/cssc.201200859

    Article  CAS  PubMed  Google Scholar 

  18. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and beta-glucosidase activity by softwood lignin preparations. J Biotechnol 125(2):198–209. https://doi.org/10.1016/j.jbiotec.2006.02.021

    Article  CAS  PubMed  Google Scholar 

  19. Strobel KL, Pfeiffer KA, Blanch HW, Clark DS (2016) Engineering cel7a carbohydrate binding module and linker for reduced lignin inhibition. Biotechnol Bioeng 113(6):1369–1374. https://doi.org/10.1002/bit.25889

    Article  CAS  PubMed  Google Scholar 

  20. Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenergy 2(1):25–32. https://doi.org/10.1166/jbmb.2008.005

    Article  Google Scholar 

  21. Yu Z, Gwak KS, Treasure T, Jameel H, Chang HM, Park S (2014) Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. ChemSusChem 7(7):1942–1950. https://doi.org/10.1002/cssc.201400042

    Article  CAS  PubMed  Google Scholar 

  22. Qin C, Clarke K, Li K (2014) Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol biofuels 7:65. https://doi.org/10.1186/1754-6834-7-65

  23. Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K (2013) Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding. Enzym Microb Technol 53(5):315–321. https://doi.org/10.1016/j.enzmictec.2013.07.003

    Article  CAS  Google Scholar 

  24. Agrawal R, Satlewal A, Kapoor M, Mondal S, Basu B (2017) Investigating the enzyme-lignin binding with surfactants for improved saccharification of pilot scale pretreated wheat straw. Bioresour Technol 224:411–418. https://doi.org/10.1016/j.biortech.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  25. Börjesson J, Engqvist M, Sipos B, Tjerneld F (2007) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzym Microb Technol 41(1–2):186–195. https://doi.org/10.1016/j.enzmictec.2007.01.003

    Article  Google Scholar 

  26. Lan T, Lou H, Zhu JY (2013) Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2–6.2. Bioenerg Res 6:476–485. https://doi.org/10.1007/s12155-012-9273-4

    Article  CAS  Google Scholar 

  27. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112. https://doi.org/10.1016/0076-6879(88)60109-1

  28. Cai C, Qiu X, Lin X, Lou H, Pang Y, Yang D, Chen S, Cai K (2016) Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate. Bioresour Technol 216:968–975. https://doi.org/10.1016/j.biortech.2016.06.043

    Article  CAS  PubMed  Google Scholar 

  29. Pan X, Kadla JF, Ehara K, Gilkes N, Saddler J (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813. https://doi.org/10.1021/jf0605392

    Article  CAS  PubMed  Google Scholar 

  30. Nakagame S, Chandra RP, Saddler JN (2011) The influence of lignin on the enzymatic hydrolysis of pretreated biomass substrates. ACS Symp Ser 1067:145–167. https://doi.org/10.1021/bk-2011-1067.ch006

    Article  CAS  Google Scholar 

  31. Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Syrup 6:17–33. https://doi.org/10.1186/1754-6834-2-21

  32. Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5(4):443. https://doi.org/10.1039/b302570e

    Article  CAS  Google Scholar 

  33. Norgren M, Notley SM, Majtnerova A, Gellerstedt G (2006) Smooth model surfaces from lignin derivatives. i. Preparation and characterization. Langmuir 22:1209–1214. https://doi.org/10.1021/la052284c

    Article  CAS  PubMed  Google Scholar 

  34. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Path 13:156–159. https://doi.org/10.1136/jcp.13.2.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toyosawa Y, Ikeo M, Taneda D, Okino S (2017) Quantitative analysis of adsorption and desorption behavior of individual cellulase components during the hydrolysis of lignocellulosic biomass with the addition of lysozyme. Bioresour Technol 234:150–157. https://doi.org/10.1016/j.biortech.2017.02.132

    Article  CAS  PubMed  Google Scholar 

  36. Lu X, Zheng X, Li X, Zhao J (2016) Adsorption and mechanism of cellulase cellulases onto lignin isolated from corn Stover pretreated with liquid hot water. Biotechnol biofuels 9:118. https://doi.org/10.1186/s13068-016-0531-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yarbrough JM, Mittal A, Mansfield E, Taylor LE 2nd, Hobdey SE, Sammond DW, Bomble YJ, Crowley MF, Decker SR, Himmel ME, Vinzant TB (2015) New perspective on glycoside hydrolase binding to lignin from pretreated corn stover. Biotechnol Biofuels 8:214. https://doi.org/10.1186/s13068-015-0397-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hui JP, Lanthier P, White TC, McHugh SG, Yaguchi M, Roy R, Thibault P (2001) Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reeseiusing capillary isoelectric focusing and electrospray mass spectrometry. J Chromatogr B 752:349–368. https://doi.org/10.1016/S0378-4347(00)00373-X

  39. Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 108(12):2823–2834. https://doi.org/10.1002/bit.23242

    Article  CAS  PubMed  Google Scholar 

  40. Ko JK, Ximenes E, Kim Y (2015) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112(3):447–456. https://doi.org/10.1002/bit.25359/abstract

    Article  CAS  PubMed  Google Scholar 

  41. Rahikainen J (2013) Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose. Dissertation, the university of Helsinki

  42. Yang Z, Zhang C (2009) Adsorption/desorption behavior of protein on nanosized hydroxyapatite coatings: a quartz crystal microbalance study. Appl Surf Sci 255(8):4569–4574. https://doi.org/10.1016/j.apsusc.2008.11.078

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial supports of the National Natural Science Foundation of China (21676109, 21376100), Science and Technology Program of Guangzhou (201707020025), and Guangdong Special Support Plan (2016TX03Z298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, H., Lin, M., Zeng, M. et al. Effect of Urea on the Enzymatic Hydrolysis of Lignocellulosic Substrate and Its Mechanism. Bioenerg. Res. 11, 456–465 (2018). https://doi.org/10.1007/s12155-018-9910-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9910-7

Keywords

Navigation