Skip to main content

Advertisement

Log in

Techno-Economic Evaluation of Cellulosic Ethanol Production Based on Pilot Biorefinery Data: a Case Study of Sweet Sorghum Bagasse Processed via L+SScF

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Replacing fossil fuels with renewable fuels derived from lignocellulosic biomass can contribute to the mitigation of global warming and the economic development of rural communities. This will require lignocellulosic biofuels to become price competitive with fossil fuels. Techno-economic analyses can provide insights into which parts of the biofuel production process need to be optimized to reduce cost or energy use. We used data obtained from a pilot biorefinery to model a commercial-scale biorefinery that processes lignocellulosic biomass to ethanol, with a focus on the minimum ethanol selling price (MESP). The process utilizes a phosphoric acid-catalyzed pre-treatment of sweet sorghum bagasse followed by liquefaction and simultaneous saccharification and co-fermentation (L+SScF) of hexose and pentose sugars by an engineered Escherichia coli strain. After validating a techno-economic model developed with the SuperPro Designer software for the conversion of sugarcane bagasse to ethanol by comparing it to a published Aspen Plus model, six different scenarios were modeled for sweet sorghum bagasse Under the most optimistic scenario, the ethanol can be produced at a cost close to the energy-equivalent price of gasoline. Aside from an increase in the price of gasoline, the gap between ethanol and gasoline prices could also be bridged by either a decrease in the cost of cellulolytic enzymes or development of value-added products from lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schneider UA, McCarl BA (2003) Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environ Resour Econ 24:291–312

    Article  Google Scholar 

  2. Energy Information Agency (2017) Electricity Data http://www.eia.gov/electricity/data.cfm. Accessed 14 March 2018

  3. Fulton LM, Lynd LR, Körner A, Greene N, Tonachel LR (2015) The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Biorefin 9:476–483. https://doi.org/10.1002/bbb.1559

    Article  CAS  Google Scholar 

  4. Pickett J, Anderson D, Bowles D, Bridgwater T, Jarvis P, Mortimer N, Poliakoff M, Woods J (2008) Sustainable biofuels: prospects and challenges. The Royal Society, London, p 81. Available at: https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2008/7980.pdf

  5. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  6. Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  7. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x

    Article  CAS  PubMed  Google Scholar 

  8. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60. https://doi.org/10.1023/B:PHYT.0000047809.65444.a4

    Article  CAS  Google Scholar 

  9. Chovau S, Degrauwe D, Van der Bruggen B (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew Sust Energ Rev 26:307–321

    Article  CAS  Google Scholar 

  10. Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346:76–85

    Article  CAS  PubMed  Google Scholar 

  11. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066. https://doi.org/10.1007/s12155-012-9208-0

    Article  CAS  Google Scholar 

  12. Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenerg Res 6:405–415. https://doi.org/10.1007/s12155-012-9276-1

    Article  CAS  Google Scholar 

  13. United Nations Conference on Trade and Development (2015) Second-generation biofuel markets: state of play, trade and developing countries perspectives. http://unctad.org/en/PublicationsLibrary/ditcted2015d8_en.pdf

  14. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  15. Regassa TH, Wortmann CS (2014) Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenergy 64:348–355. https://doi.org/10.1016/j.biombioe.2014.03.052

    Article  CAS  Google Scholar 

  16. Shukla S, Felderhoff TJ, Saballos A, Vermerris W (2017) The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crop Res 203:181–191. https://doi.org/10.1016/j.fcr.2016.12.004

    Article  Google Scholar 

  17. Castro E, Nieves IU, Rondón V, Sagues WJ, Fernández-Sandoval MT, Yomano LP, York SW, Erickson J, Vermerris W (2017) Potential for ethanol production from different sorghum cultivars. Ind Crop Prod 109:367–373. https://doi.org/10.1016/j.indcrop.2017.08.050

    Article  CAS  Google Scholar 

  18. Adams CB, Erickson JE, Singh MP (2015) Investigation and synthesis of sweet sorghum crop responses to nitrogen and potassium fertilization. Field Crop Res 178:1–7. https://doi.org/10.1016/j.fcr.2015.03.014

    Article  Google Scholar 

  19. Erickson JE, Woodard KR, Sollenberger LE (2012) Optimizing sweet sorghum production for biofuel in the southeastern USA through nitrogen fertilization and top removal. Bioenerg Res 5:86–94. https://doi.org/10.1007/s12155-011-9129-3

    Article  Google Scholar 

  20. Ou MS, Awasthi D, Nieves I, Wang L, Erickson J, Vermerris W, Ingram LO, Shanmugam KT (2015) Sweet sorghum juice and bagasse as feedstocks for the production of optically pure lactic acid by native and engineered Bacillus coagulans strains. Bioenerg Res 9:123–131. https://doi.org/10.1007/s12155-015-9670-6

    Article  Google Scholar 

  21. Wang L, Ou MS, Nieves I, Erickson JE, Vermerris W, Ingram LO, Shanmugam KT (2015) Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C. Bioresour Technol 198:533–539. https://doi.org/10.1016/j.biortech.2015.09.062

    Article  CAS  PubMed  Google Scholar 

  22. Vermerris W, Saballos A (2013) Genetic enhancement of sorghum for biomass utilization. In: Paterson AH (ed) Genomics of the Saccharinae. Springer, New York, pp 391–424

    Chapter  Google Scholar 

  23. Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S142–S153. https://doi.org/10.2135/cropsci2007.04.0013IPBS

    Article  Google Scholar 

  24. Tyner WE, Taheripour F (2007) Renewable energy policy alternatives for the future. Am J Agric Econ 89:1303–1310. https://doi.org/10.1111/j.1467-8276.2007.01101.x

    Article  Google Scholar 

  25. Sheridan C (2013) Big oil turns on biofuels. Nat Biotechnol 31:870–873

    Article  CAS  PubMed  Google Scholar 

  26. U.S. EPA Renewable Fuel Standard Program. https://www.epa.gov/renewable-fuel-standard-program. Accessed 14 March 2018

  27. Brown TR (2015) A critical analysis of thermochemical cellulosic biorefinery capital cost estimates. Biofuels Bioprod Biorefin 9:412–421. https://doi.org/10.1002/bbb.1546

    Article  CAS  Google Scholar 

  28. Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025. https://doi.org/10.1016/j.biortech.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  29. Hamelinck CN, van HG, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. https://doi.org/10.1016/j.biombioe.2004.09.002

    Article  CAS  Google Scholar 

  30. Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27. https://doi.org/10.1186/1754-6834-4-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545

    Article  CAS  Google Scholar 

  32. Dutta A, Dowe N, Ibsen KN, Schell DJ, Aden A (2010) An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnol Prog 26:64–72

    CAS  PubMed  Google Scholar 

  33. Konda NM, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86

    Article  PubMed  PubMed Central  Google Scholar 

  34. Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569

    Article  CAS  Google Scholar 

  35. Vicari KJ, Tallam SS, Shatova T, Joo K, Scarlata CJ, Humbird D, Wolfrum EJ, Beckham GT (2012) Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty. Biotechnol Biofuels 5:23. https://doi.org/10.1186/1754-6834-5-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Natl Renew Energy Lab. NREL/TP-510-32438

  37. Fontana JD, Correa JBC, Duarte JH et al (1984) Aqueous phosphoric acid hydrolysis of hemicelluloses from sugarcane and sorghum bagasses. Biotechnol Bioeng Symp 14:175–186

    CAS  Google Scholar 

  38. Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO (2011) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 102:2702–2711

    Article  CAS  PubMed  Google Scholar 

  39. Geddes CC, Mullinnix MT, Nieves IU, Hoffman RW, Sagues WJ, York SW, Shanmugam KT, Erickson JE, Vermerris WE, Ingram LO (2013) Seed train development for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified fermentation process. Bioresour Technol 128:716–724

    Article  CAS  PubMed  Google Scholar 

  40. Gubicza K, Nieves IU, Sagues WJ, Barta Z, Shanmugam KT, Ingram LO (2016) Techno-economic analysis of ethanol production from sugarcane bagasse using a liquefaction plus simultaneous saccharification and co-fermentation process. Bioresour Technol 208:42–48

    Article  CAS  PubMed  Google Scholar 

  41. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP) Tech Rep NREL/ TP-510-42618 1–15. National Renewable Energy Laboratory, Golden

  42. Rodrigues AC, Haven MØ, Lindedam J, Felby C, Gama M (2015) Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing. Enzym Microb Technol 79–80:70–77. https://doi.org/10.1016/j.enzmictec.2015.06.019

    Article  Google Scholar 

  43. Novozymes (2010) Cellic® CTec2 and HTec2—enzymes for hydrolysis of lignocellulosic materials.1–9. doi: 2010-01668-01. Available at: http://www.shinshu-u.ac.jp/faculty/engineering/chair/chem010/manual/Ctec2.pdf. Accessed 14 March 2018

  44. Novozymes (2012) Novozyme Cellic CTec3. https://www.novozymes.com/en/news/news-archive/2012/02/advanced-biofuels-becoming-reality-with-novozymes-new-enzyme-technology Accessed 14 March 2018

  45. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266. https://doi.org/10.1007/s00253-003-1444-y

    Article  CAS  PubMed  Google Scholar 

  46. Zheng H, Wang X, Yomano LP, Shanmugam KT, Ingram LO (2012) Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA. Appl Environ Microbiol 78:4346–4352. https://doi.org/10.1128/AEM.00356-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geddes R, Shanmugam KT, Ingram LO (2015) Combining treatments to improve the fermentation of sugarcane bagasse hydrolysates by ethanologenic Escherichia coli LY180. Bioresour Technol 189:15–22. https://doi.org/10.1016/j.biortech.2015.03.141

    Article  CAS  PubMed  Google Scholar 

  48. U.S. Department of Energy (2016) 2016 Billion-ton report: advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstocks. M. H. Langholtz, B. J. Stokes, and L. M. Eaton (Leads), ORNL/TM-2016/160. doi: 10.2172/1271651.http://energy.gov/eere/bioenergy/2016-billion-ton-report

  49. Graham RL, English BC, Noon CE (2000) A geographic information system-based modeling system for evaluating the cost of delivered energy crop feedstock. Biomass Bioenergy 18:309–329. https://doi.org/10.1016/S0961-9534(99)00098-7

    Article  Google Scholar 

  50. Internal Revenue Service (2013) Instructions for Form 990-PF (2012)

  51. Nieves IU, Geddes CC, Mullinnix MT, Hoffman RW, Tong Z, Castro E, Shanmugam KT, Ingram LO (2011) Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. Bioresour Technol 102:6959–6965. https://doi.org/10.1016/j.biortech.2011.04.036

    Article  CAS  PubMed  Google Scholar 

  52. Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88. https://doi.org/10.1016/j.pecs.2014.10.003

    Article  Google Scholar 

  53. Peters MS, Timmerhaus KD, West RE et al (2002) Plant design and economics for chemical engineers. McGraw-Hill, New York, p 1008

    Google Scholar 

  54. Zhao X, Brown TR, Tyner WE (2015) Stochastic techno-economic evaluation of cellulosic biofuel pathways. Bioresour Technol 198:755–763. https://doi.org/10.1016/j.biortech.2015.09.056

    Article  CAS  PubMed  Google Scholar 

  55. Searle S, Sanchez FP, Malins C, German J (2014) Technical barriers to the consumption of higher blends of ethanol. The Interntional Council on Clean Transportation, Washington, DC, p 36. https://www.theicct.org/sites/default/files/publications/ICCT_ethanol_revised_02_03_format.pdf

  56. Babcock BA, Pouliot S (2013) Price it and they will buy: how E85 can break the blend wall. CARD Policy Brief13. http://lib.dr.iastate.edu/card_policybriefs/13

  57. Golecha R, Gan J (2016) Optimal contracting structure between cellulosic biorefineries and farmers to reduce the impact of biomass supply variation: game theoretic analysis. Biofuels Bioprod Biorefin 10:129–138. https://doi.org/10.1002/bbb

    Article  CAS  Google Scholar 

  58. Energy Information Administration Gasoline and Diesel Fuel Update. http://www.eia.gov/petroleum/gasdiesel/. Accessed 14 March 2018

  59. Wang L, Tong Z, Ingram LO, Cheng Q, Matthews S (2013) Green composites of poly (lactic acid) and sugarcane bagasse residues from bio-refinery processes. J Polym Environ 21:780–788

    Article  Google Scholar 

  60. Zeng J, Yoo CG, Wang F, Pan X, Vermerris W, Tong Z (2015) Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids. ChemSusChem 8:861–871

    Article  CAS  PubMed  Google Scholar 

  61. Ten E, Ling C, Wang Y, Srivastava A, Dempere LA, Vermerris W (2014) Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules 15:327–338

    Article  CAS  PubMed  Google Scholar 

  62. Ten E, Vermerris W (2015) Recent developments in polymers derived from industrial lignin. J Appl Polym Sci 132:42069. https://doi.org/10.1002/app.42069

    Article  Google Scholar 

  63. De Wild PJ, Huijgen WJJ, Gosselink RJA (2014) Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels, Bioprod Biorefining 8:645–657. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  64. Liska AJ, Perrin RK (2009) Indirect land use emissions in the life cycle of biofuels: regulations vs science. Biofuels Bioprod Biorefin 3:318–328. https://doi.org/10.1002/bbb.153

    Article  CAS  Google Scholar 

  65. Van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:1–18. https://doi.org/10.3389/fpls.2013.00107

    Google Scholar 

  66. Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53:105–119. https://doi.org/10.1111/j.1744-7909.2010.01020.x

    Article  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge funding from the USDA-NIFA Biomass Research and Development Initiative Grant No. 2011-10006-30358 (WV, KTS, LOI); US Department of Energy’s Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office and sponsored by the US DOE’s International Affairs under award no. DE-PI0000031 (WV, KTS, LOI); and Florida Department of Agriculture and Consumer Sciences Grant No. 020650 (LOI). The authors also thank Foley Cellulose (Perry, Florida) for proving low-pressure steam and many amenities for the pilot plant, Florida Crystals (West Palm Beach, FL) for providing sugarcane bagasse; Dr. Randy Powell and colleagues at Delta BioRenewables (Memphis, TN) for processing sweet sorghum on a commercial scale; and Novozymes North America (Franklinton, NC) for providing cellulase enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred Vermerris.

Electronic Supplementary Material

ESM 1

(DOCX 67kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Rijn, R., Nieves, I.U., Shanmugam, K.T. et al. Techno-Economic Evaluation of Cellulosic Ethanol Production Based on Pilot Biorefinery Data: a Case Study of Sweet Sorghum Bagasse Processed via L+SScF. Bioenerg. Res. 11, 414–425 (2018). https://doi.org/10.1007/s12155-018-9906-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9906-3

Keywords

Navigation