Skip to main content
Log in

Efficient and Product-Controlled Depolymerization of Lignin Oriented by Raney Ni Cooperated with Cs x H3 − x PW12O40

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

A representative lignin was firstly prepared and characterized as well as an efficient lignin depolymerization process with highly controllable products was presented using Cs-substituted tungstophosphate (CsTP) cooperated with Raney Ni in the present study. The double enzymatic lignin (DEL) was depolymerized efficiently in the temperature range of 250–280 °C. The synergistic effects of Raney Ni with CsTP and temperature on the degradation of lignin were investigated by FT-IR, NMR, GPC, and GC-MS techniques. Under the optimal condition with tandem catalyst at 270 °C for 3 h, the yield of depolymerized DEL was over 70 wt% and phenolic monomers were over 20%. The weight average molecular weight of the lignin was reduced significantly from 15,770 to 1150 g/mol (for aqueous phase lignin) and about 420 g/mol (organic phase lignin). In addition, only a few syringols and cyclohexanols were obtained, indicating that this tandem catalyst facilitates the depolymerization and demethoxylation but prevents hydrogenation of benzene ring of lignin. More importantly, the formation of char was restrained effectively in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Zhang X, Tu M, Paice MG (2011) Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bio Energy Research 4(4):246–257

    Google Scholar 

  2. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115(21):11559–11624

    Article  CAS  PubMed  Google Scholar 

  3. Xu C, Arancon RA, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43(22):7485–7500

    Article  CAS  PubMed  Google Scholar 

  4. Song Q, Wang F, Xu J (2012) Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem Commun 48(56):7019–7021

    Article  CAS  Google Scholar 

  5. Ferrini P, Rinaldi R (2014) Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew Chem Int Ed 53(33):8634–8639

    Article  CAS  Google Scholar 

  6. Jiang Y, Li Z, Tang X, Sun Y, Zeng X, Liu S, Lin L (2015) Depolymerization of cellulolytic enzyme lignin for the production of monomeric phenols over Raney ni and acidic zeolite catalysts. Energy Fuel 29(3):1662–1668

    Article  CAS  Google Scholar 

  7. Wang X, Rinaldi R (2012) Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions. Energy environ Sci 5(8):8244–8260

    Article  CAS  Google Scholar 

  8. Wang X, Rinaldi R (2012) Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin. ChemSusChem 5(8):1455–1466

    Article  CAS  PubMed  Google Scholar 

  9. Yan N, Zhao C, Dyson PJ, Wang C, Liu L, Kou Y (2008) Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 1(7):626–629

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Wang S, Huang J, Chen L, Ma L, Huang X (2013) Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal–organic framework hybrid. ChemSusChem 6(8):1545–1555

    Article  CAS  PubMed  Google Scholar 

  11. Deng W, Liu M, Zhang Q, Tan X, Wang Y (2010) Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chem Commun 46(15):2668–2670

    Article  CAS  Google Scholar 

  12. Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46(20):3577–3579

    Article  CAS  Google Scholar 

  13. Parthasarathi R, Romero RA, Redondo A, Gnanakaran S (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2(20):2660–2666

    Article  CAS  Google Scholar 

  14. Bouxin F, McVeigh A, Tran F, Westwood N, Jarvisa M, Jackson SD (2015) Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1—impact of the lignin structure. Green Chem 17(2):1235–1242

    Article  CAS  Google Scholar 

  15. Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354(6310):329–333

    Article  CAS  PubMed  Google Scholar 

  16. Wen JL, Sun SL, Yuan TQ, Xu F, Sun RC (2014) Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Appl Energy 121:1–9

    Article  CAS  Google Scholar 

  17. Langpape M, Millet JMM, Ozkan S, Boudeulle M (1999) Study of cesium or cesium-transition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts. J Catal 181(1):80–90

    Article  CAS  Google Scholar 

  18. Zhang J, Sun M, Cao C, Zhang Q, Wang Y, Wan H (2010) Effects of acidity and microstructure on the catalytic behavior of cesium salts of 12-tungstophosphoric acid for oxidative dehydrogenation of propane. Appl Catal A 380(1):87–94

    Article  CAS  Google Scholar 

  19. Faix O (1991) classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung - International Journal of the Biology, Chemistry, Physics and Technology of Wood 45(S1):21–28

    CAS  Google Scholar 

  20. Mahmood N, Yuan Z, Schmidt J, Xu CC (2015) Hydrolytic depolymerization of hydrolysis lignin: effects of catalysts and solvents. Bioresour Technol 190:416–419

    Article  CAS  PubMed  Google Scholar 

  21. Jahan MS, Chowdhury DN, Islam MK, Moeiz SI (2007) Characterization of lignin isolated from some nonwood available in Bangladesh. Bioresour Technol 98(2):465–469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude for the financial support from the Natural Science Foundation of China (31430092) and Program of international S&T Cooperation of China (2015DFG31860).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Long Wen or Run-Cang Sun.

Electronic Supplementary Material

Fig. S1

(DOCX 69 kb)

Fig. S2

(DOCX 86 kb)

Fig. S3

(DOCX 189 kb)

Fig. S4

(DOCX 273 kb)

Fig. S5

(DOCX 120 kb)

Table S1

(DOCX 13 kb)

Table S2

(DOCX 14 kb)

Table S3

(DOCX 49 kb)

Table S4

(DOCX 61 kb)

Table S5

(DOCX 71 kb)

Table S6

(DOCX 14 kb)

Table S7

(DOCX 618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, XJ., Wen, JL., Huang, PL. et al. Efficient and Product-Controlled Depolymerization of Lignin Oriented by Raney Ni Cooperated with Cs x H3 − x PW12O40 . Bioenerg. Res. 10, 1155–1162 (2017). https://doi.org/10.1007/s12155-017-9855-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9855-2

Keywords

Navigation