Skip to main content

Advertisement

Log in

Can Biomethane Potential (BMP) Be Predicted from Other Variables Such As Biochemical Composition in Lignocellulosic Biomass and Related Organic Residues?

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The potential of methane production by anaerobic digestion of lignocellulosic biomass depends not only on the availability of the resources in the considered territory, but also on their physico-chemical characteristics. Relevant methods of characterization are, therefore, needed to select and possibly combine the most appropriate biomass substrates in order to optimize energy recovery through anaerobic digestion processes. The objective of the present study was to determine whether biomethane potential of such substrates could be predicted from a limited number of variables more rapidly or determined more easily. A set of 36 biomass substrates and organic residues from a variety of origins was analyzed for total and easily hydrosoluble organic matter fractions (volatile solid, VS and soluble chemical oxygen demand, SCOD), neutral detergent soluble fraction (SOL), hemicelluloses (HEM), cellulose (CELL), and lignin-like residual fractions (RES). Bioreactivity of all samples was also measured by experimental assays (biochemical oxygen demand, BOD and biochemical methane potential, BMP). The whole set of data thereby obtained was analyzed statistically considering one dependent variable (BMP), and six independent variables (SCOD, SOL, HEM, CELL, RES, and BOD). Partial least square (PLS) analysis revealed very clearly a positive correlation between BMP and BOD, which were both anti-correlated with RES. On the other hand, no correlations were observed between BMP, SCOD, HEM, and CELL contents. PLS analysis showed that BMP was significantly correlated to the six independent variables. The most influential variables were found to be RES and BOD, and a polynomial model was successfully validated for the prediction of BMP from RES and BOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

BD Aero :

Bioconversion yield under aerobic condition

BD Anae :

Bioconversion yield under anaerobic condition

BOD:

Biological oxygen demand after 28 days of incubation as mass of oxygen consumed by TS or VS in 28 days of incubation at 30 °C (g kg−1)

BMP:

Biochemical methane production after 60 days of incubation by VS in 60 days of incubation at 35 °C (L kg−1)

CELL:

Cellulose-like content from Van Soest sequential extraction by VS (g kg−1)

Cellulose:

Cellulose content from NREL extraction procedure by VS (g kg−1)

CODTot :

Total chemical oxygen demand by TS (gO2 kg−1)

HEM:

Hemicellulose-like content from Van Soest sequential extraction by VS (g kg−1)

PLS:

Partial least square analysis

PRESS:

Predicted residual sum of squares

R2 :

Correlation coefficient

RES :

Residual lignin-like content from Van Soest sequential extractions by VS (g kg−1)

RMSW:

Residual municipal solid waste

rRMSE:

Relative root mean square error

SCOD:

Soluble chemical oxygen demand by VS in leachate collected from leaching test at a L/S ratio of 10 (gO2 kg−1)

SOL:

Soluble fraction from Van Soest sequential extractions by VS (g kg−1)

TOC:

Total organic carbon by TS (g kg−1)

TS:

Total solid

VIP:

Variable importance in projection

VS:

Volatile solid (g kg−1)

References

  1. Buffière P, Bayard R, Germain P (2009) Freins au développement de la filière biogaz : les besoins en recherche et développement. ETUDE RECORD N° 07-0418/1A. Rapport final. 92

  2. EurObserv’ER (2013) http://www.energies-renouvelables.org/observ-er/stat_baro/barobilan/barobilan13-fr.pdf

  3. Davidsson A, Gruvberger C, Christensen TH, Hansen TL, Jensen JLC (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manage 27:406–414

    Article  CAS  Google Scholar 

  4. Bidlingmaier W, Sidaine J-M, Papadimitriou EK (2004) Separate collection and biological waste treatment in the European community. Rev Environ Sci Biotechnol 3:307–320

    Article  CAS  Google Scholar 

  5. Chandler JA, Jewell WJ, Gossett JM (1980) Predicting methane fermentation biodegradability. Biotechnol Bioengin Symp Ser 10:93–107

    CAS  Google Scholar 

  6. Gunaseelan VN (2007) Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol 98(6):1270–1277

    Article  CAS  Google Scholar 

  7. Liu X, Bayard R, Benbelkacem H, Buffiere P, Gourdon R (2014) Évaluation du potentiel biométhanogène de biomasses lignocellulosiques. Déchets, Sci et Tech 67:37–48

    Google Scholar 

  8. Liu X, Bayard R, Benbelkacem H, Buffiere P, Gourdon R (2015) Evaluation of the correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion process and their biochemical characteristics. Biomass Bioenergy 81:534–543

    Article  CAS  Google Scholar 

  9. Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer J-P, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Envion Sci Technol 46:12217–25

    Article  CAS  Google Scholar 

  10. Noike T, Endo G, Chang JE, Yaguchi JI, Matsumoto JI (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27:1482–1489

    Article  CAS  Google Scholar 

  11. Stinson JA, Ham RK (1995) Effect of lignin on the anaerobic decomposition of cellulose as determined through the use of a biochemical methane potential method. Envion Sci Technol 29:2305–2310

    Article  CAS  Google Scholar 

  12. Tong X, Smith LH, McCarty PL (1990) Methane fermentation of selected lignocellulosic materials. Biomass 21:239–255

    Article  CAS  Google Scholar 

  13. Triolo JM, Sommer SG, Maller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102:9395–9402

    Article  CAS  Google Scholar 

  14. Triolo JM, Pedersen L, Qu H, Sommer SG (2012) Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour Technol 125:226–232

    Article  CAS  Google Scholar 

  15. Xu F, Wang ZW, Li Y (2014) Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresour Technol 173:168–76

    Article  CAS  Google Scholar 

  16. Fan LT, Lee Y-H, Gharpuray MM (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv Biochem Eng 23:157–187

    CAS  Google Scholar 

  17. Jeffries TW (1990) Biodegradation of lignin-carbohydrate complexes. Biodegradation 1:163–176

    Article  CAS  Google Scholar 

  18. Buffière P, Loisel D, Bernet N, Delgenes JP (2006) Towards new indicators for the prediction of solid waste anaerobic digestion properties. Wat Sci Technol 53:233–241

    Article  Google Scholar 

  19. Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46:125–132

    Article  CAS  Google Scholar 

  20. Rodriguez C, Hiligsmann S, Ongena M, Charlier R, Thonart P (2005) Development of an enzymatic assay for the determination of cellulose bioavailability in municipal solid waste. Biodegradation 16:415–422

    Article  CAS  Google Scholar 

  21. Young LY, Frazer AC (1987) The fate of lignin and lignin-derived compounds in anaerobic environments. Geomicrobiol J 5:261–293

    Article  CAS  Google Scholar 

  22. AFNOR NF EN 15169 (2005) Caractérisation des déchets - Détermination de la perte au feu des déchets, des boues et des sédiments. Mesure de la teneur en résidu calciné par calcination à 550°C. AFNOR, La Plaine Saint-Denis (Fr)

  23. ISO 14235 (1998) Soil quality - Determination of organic carbon by sulfochromic oxidation. International Organization for Standardization, Geneva

    Google Scholar 

  24. ISO 10694 (1995) Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis). International Organization for Standardization, Geneva

    Google Scholar 

  25. AFNOR NF EN 12457–2 (2002) Caractérisation des déchets - Lixiviation - Essai de conformité pour lixiviation des déchets fragmentés et des boues - Partie2: essai en bâchée unique avec un rapport liquide-solide de 10 l/kg et une granularité inférieure à 4 mm (sans ou avec réduction de la granularité). AFNOR, La Plaine Saint-Denis (Fr)

  26. ISO 15705 (2002) Water quality - Determination of the chemical oxygen demand index (ST-COD) - Small-scale sealed-tube method. International Organization for Standardization, Geneva

    Google Scholar 

  27. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds IV determination of plant cell wall constituents. J Assoc Off Anal Chem 50:50–55

    Google Scholar 

  28. Mertens DR (2002) Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing beakers or crucibles: collaborative study. J Assoc Off Assoc Chem Int 85:1217–1240

    CAS  Google Scholar 

  29. ISO 10707 (1994) Water quality - Evaluation in an aqueous medium of the “ultimate” aerobic biodegradability of organic compounds - Method by analysis of biochemical oxygen demand (closed bottle test). International Organization for Standardization, Geneva

    Google Scholar 

  30. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J, Guwy A et al (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–34

    Article  CAS  Google Scholar 

  31. ISO 11734 (1995) Water quality - Evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge - Method by measurement of the biogas production. International Organization for Standardization, Geneva

    Google Scholar 

  32. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  33. Barrena R, d’Imporzano G, Ponsá S, Gea T, Artola A, Vázquez F, Sánchez A, Adani F (2009) In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical–biological treated waste. J Hazard Mat 169:1065–1072

    Article  Google Scholar 

  34. Cossu R, Raga R (2008) Test methods for assessing the biological stability of biodegradable waste. Waste Manage 28:381–388

    Article  CAS  Google Scholar 

  35. Ponsá S, Gea T, Alerm L, Cerezo J, Sánchez A (2008) Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manage 28:2735–2742

    Article  Google Scholar 

  36. Motte JC, Escudié R, Beaufils N, Steyer JP, Bernet N, Delgenès J, Dumas C (2014) Morphological structures of wheat straw strongly impacts its anaerobic digestion. Ind Crops Prod 52:695–701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Bayard.

Additional information

Highlights

• Biomethane potential (BMP) and biological oxygen demand (BOD) were both anti-correlated with Van Soest’s residual fraction (RES).

• For substrates representative of the large ranges of biochemical compositions, no clear correlations were observed between BMP, soluble COD (SCOD), hemicellulose (HEM), and (CELL) contents.

• The most influential variables to predict BMP were found to be RES and BOD.

• A polynomial model was successfully validated for the prediction of BMP from RES and BOD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayard, R., Liu, X., Benbelkacem, H. et al. Can Biomethane Potential (BMP) Be Predicted from Other Variables Such As Biochemical Composition in Lignocellulosic Biomass and Related Organic Residues?. Bioenerg. Res. 9, 610–623 (2016). https://doi.org/10.1007/s12155-015-9701-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9701-3

Keywords

Navigation