BioEnergy Research

, Volume 6, Issue 2, pp 494–505 | Cite as

De Novo Sequencing and Global Transcriptome Analysis of Nannochloropsis sp. (Eustigmatophyceae) Following Nitrogen Starvation

  • Chengwei Liang
  • Shaona Cao
  • Xiaowen Zhang
  • Baohua Zhu
  • Zhongliang Su
  • Dong Xu
  • Xiangyu Guang
  • Naihao YeEmail author


Nannochloropsis sp. is an economically and nutritionally important microalga. Recently it has been demonstrated that Nannochloropsis sp. has significant potential for biofuel production. To determine the mechanisms of lipid formation and accumulation during nitrogen starvation, a transcriptomic study was performed to compare gene expression during growth with and without nitrogen. Digital expression analysis identified 1,855 differentially expressed genes between cells grown under nitrogen-replete and nitrogen-deprived conditions; this provided novel insights into the molecular mechanisms of lipid formation by Nannochloropsis sp. under stress. As expected, nitrogen deprivation induced genes involved in nitrogen metabolism and lipid biosynthesis. Although the chlorophyll content decreased following nitrogen deprivation, a subset of genes putatively encoding light-harvesting complex (LHC) proteins were upregulated. These upregulated LHCs may play a role on photoprotection. The sequence data were confirmed using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. The expressions of a number of genes involved in acetyl-CoA metabolism were also affected under nitrogen-deprived stress, which may change fatty acids indirectly. Overall, we found low gene expression levels for fatty acid synthesis, suggesting that the buildup of precursors for the acetyl-CoA carboxylases may play a more significant role in TAG synthesis compared with the actual enzyme levels of acetyl-CoA carboxylases per se. The changes in transcript abundance in Nannochloropsis sp. following nitrogen deprivation provided a potential source for exploration of molecular mechanisms of lipid formation and accumulation. Furthermore, a set of simple sequence repeat motifs were identified from the expressed sequence tags, which provide useful genetic markers for further genetic analysis.


Nannochloropsis sp. Transcriptome Nitrogen starvation 



The authors thank the Beijing Institutes of Life Science, Chinese Academy of Sciences (BIOLS), for kind assistance in bioinformatic analysis. This work was supported by Shandong Science and Technology plan project (2011GHY11528), the Specialized Fund for the Basic Research Operating Expenses Program (20603022012004), National Natural Science Foundation of China (41176153, 31000135,40972162), Natural Science Foundation of Shandong Province (2009ZRA02075), Qingdao Municipal Science and Technology plan project (11-3-1-5-hy, 11-2-4-3-(5)-jch), and National Marine Public Welfare Research Project (200805069).

Supplementary material

12155_2012_9269_MOESM1_ESM.xls (28 kb)
Additional File 1 The primers used in the qPCR. (XLS 28 kb)
12155_2012_9269_MOESM2_ESM.xls (7.6 mb)
Additional File 2 The total information of Unigenes. This file contains every identified gene, its annotation based on the public database and its change in expression between the two different conditions. (XLS 7,739 kb)
12155_2012_9269_MOESM3_ESM.xls (105 kb)
Additional File 3 Pathway based on the KEGG. The file includes the pathways in which the differently expressed gene involved. (XLS 105 kb)
12155_2012_9269_MOESM4_ESM.xls (1.6 mb)
Additional File 4 SSR markers and designed primers. SSR markers were identified based on the EST sequences and primers were designed based the SSRs. (XLS 1,631 kb)
12155_2012_9269_MOESM5_ESM.seq (9.7 mb)
Additional File 5 All the EST sequence data. The file can be read by the softwares such as Utraedit, Dnaman, NotePad et al. (SEQ 9,945 kb)


  1. 1.
    Renaud S, Parry D, Thinh L, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp., and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53CrossRefGoogle Scholar
  2. 2.
    Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133:295–309CrossRefGoogle Scholar
  3. 3.
    Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, OxfordGoogle Scholar
  4. 4.
    Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47CrossRefGoogle Scholar
  5. 5.
    Krienitz L, Wirth M (2006) The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36:204–210CrossRefGoogle Scholar
  6. 6.
    Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedCrossRefGoogle Scholar
  7. 7.
    Solovchenko A, Khozin-Goldberg I, Recht L, Boussiba S (2010) Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotechnol (NY). doi: 10.1007/s10126-010-9323-x
  8. 8.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  9. 9.
    Li YT, Han DX, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresource Technol 102:123–129CrossRefGoogle Scholar
  10. 10.
    Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A et al (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955PubMedCrossRefGoogle Scholar
  11. 11.
    Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329(5988):223–226PubMedCrossRefGoogle Scholar
  12. 12.
    Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250PubMedCrossRefGoogle Scholar
  13. 13.
    Chen CL, Chen CJ, Vallon O, Huang ZP, Zhou H, Qu LH (2008) Genomewide analysis of box C/D and box H/ACA snoRNAs in Chlamydomonas reinhardtii reveals an extensive organization into intronic gene clusters. Genetics 179(1):21–30PubMedCrossRefGoogle Scholar
  14. 14.
    Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  15. 15.
    Armbrust EV, Berges J, Bowler C, Green B, Martinez D, Putnam N et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  16. 16.
    Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzial G et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621PubMedCrossRefGoogle Scholar
  17. 17.
    Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL et al (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686. doi: 10.1038/ncomms1688 PubMedCrossRefGoogle Scholar
  18. 18.
    Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. Methods Mol Biol 533:1–12PubMedCrossRefGoogle Scholar
  19. 19.
    Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264PubMedCrossRefGoogle Scholar
  20. 20.
    Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141PubMedCrossRefGoogle Scholar
  21. 21.
    Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J et al (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11:262PubMedCrossRefGoogle Scholar
  22. 22.
    Wang W, Wang Y, Zhang Q, Qi Y, Guo D (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:465PubMedCrossRefGoogle Scholar
  23. 23.
    Lanier W, Moustafa A, Bhattacharya D, Comeron JM (2008) EST analysis of ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes. PLoS One 3(5):e2171. doi: 10.1371/journal.pone.0002171 PubMedCrossRefGoogle Scholar
  24. 24.
    Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S et al (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391PubMedCrossRefGoogle Scholar
  25. 25.
    Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions—I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51PubMedCrossRefGoogle Scholar
  26. 26.
    Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol. doi: 10.1007/s00253-011-3170
  27. 27.
    Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z (2002) Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). J Phycol 38:991–994CrossRefGoogle Scholar
  28. 28.
    Hoffmann M, Kai M, Schulz R, Vanselow KH (2010) TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar Drugs 8:2526–2545PubMedCrossRefGoogle Scholar
  29. 29.
    Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239PubMedCrossRefGoogle Scholar
  30. 30.
    Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosi Bioeng 109:198–201CrossRefGoogle Scholar
  31. 31.
    Mou SL,Xu D,Ye NH, Zhang XW, Liang CW, Liang Q, et al. (2011) Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BODIPY505/515.J Phycol Appl. Doi  10.1007/s10811-011-9746-4
  32. 32.
    Chi XY, Yang QL, Pan LJ, Chen MN, He YN, Yang Z et al (2011) Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep 30:1393–1404PubMedCrossRefGoogle Scholar
  33. 33.
    Solovchenko A, Merzlyak MN, Khozin-Goldberg I, Cohen Z, Boussiba S (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incise (chlorophyta, trebouxiophyceae) mutant deficient in Δ-5 desaturase by nitrogen starvation and high light. J Phycol 46:763–772CrossRefGoogle Scholar
  34. 34.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  35. 35.
    Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  36. 36.
    Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637PubMedCrossRefGoogle Scholar
  37. 37.
    Tatusov RL, Fedorova ND, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinforma 4:41CrossRefGoogle Scholar
  38. 38.
    Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A et al (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318PubMedCrossRefGoogle Scholar
  39. 39.
    Zdobnov EM, Apweiler R (2001) InterProScan an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17(9):847–848PubMedCrossRefGoogle Scholar
  40. 40.
    Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261PubMedCrossRefGoogle Scholar
  41. 41.
    Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34 (Web Server issue):W293-7Google Scholar
  42. 42.
    Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357. doi: 10.1093/nar/gkj102 PubMedCrossRefGoogle Scholar
  43. 43.
    Vencio RZ, Brentani H, Pereira CA (2003) Using credibility intervals instead of hypothesis tests in SAGE analysis. Bioinformatics 19:461–2464CrossRefGoogle Scholar
  44. 44.
    Romualdi C, Bortoluzzi S, D'Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12(2):159–162PubMedGoogle Scholar
  45. 45.
    Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3):411–422PubMedGoogle Scholar
  46. 46.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  47. 47.
    Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid compo-sition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440Google Scholar
  48. 48.
    Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81CrossRefGoogle Scholar
  49. 49.
    Sukenik A, Carmeli Y (1990) Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light–dark cycle. J Phycol 26:463–469CrossRefGoogle Scholar
  50. 50.
    Pinheiro M, Egas C, Gomes P, Afonso M, Shank T, Santos RS et al (2010) High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus. BMC Genomics 11:559PubMedCrossRefGoogle Scholar
  51. 51.
    Maberly SC, Courcelle C, Groben R, Gontero B (2010) Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. J Exp Bot 61(3):735–745PubMedCrossRefGoogle Scholar
  52. 52.
    Miller R, Wu G, Deshpande RR, Vieler A, Gärtner K, Li X et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752PubMedCrossRefGoogle Scholar
  53. 53.
    Sugden C, Donaghy PG, Halford NG, Hardie DG (1999) Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate HMG-coenzyme A reductase, nitrate reductase and sucrose phosphate synthase in vitro. Plant Physiol 120:1–18CrossRefGoogle Scholar
  54. 54.
    Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989PubMedCrossRefGoogle Scholar
  55. 55.
    Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479PubMedCrossRefGoogle Scholar
  56. 56.
    Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM et al (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:40. doi: 10.1186/1754-6834-5-40 PubMedCrossRefGoogle Scholar
  57. 57.
    Sandona D, Croce R, Pagano A, Crimi M, Bassi R (1998) Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta 1365:207–214PubMedCrossRefGoogle Scholar
  58. 58.
    Novoderezhkin VI, Palacios MA, Van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 angstrom crystal structure. J Phys Chem B 109:10493–10504PubMedCrossRefGoogle Scholar
  59. 59.
    Li T, Gong C, Wang T (2010) The rice light-regulated gene RA68 encodes a novel protein interacting with oxygen-evolving complex PsbO mature protein. Plant Mol Biol Rep 28:136–143CrossRefGoogle Scholar
  60. 60.
    Soria-Guerra RE, Rosales-Mendoza S, Gasic K, Wisniewski ME, Band M, Korban SS (2011) Gene expression is highly regulated in early developing fruit of apple. Plant Mol Bio Rep. doi: 10.1007/s11105-011-0300-y
  61. 61.
    Wang L, Li X, Zhao Q, Jing S, Chen S, Yuan H (2009) Identification of genes induced in response to low-temperature treatment in tea leaves. Plant Mol Biol Rep 27:257–265CrossRefGoogle Scholar
  62. 62.
    Dong MT, Zhang XW, Zhuang ZM, Zou J, Ye NH, Xu D et al (2011) Characterization of the LhcSR gene under light and temperature stress in the green alga Ulva linza. Plant Mol Biol Rep. doi: 10.1007/s11105-011-0311-8
  63. 63.
    Collier JL, Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC7942: not all bleaching is the same. J Bacteriol 174:4718–4726PubMedGoogle Scholar
  64. 64.
    BultéL WFA (1992) Evidence for a selective destabilization of an integral membrane protein, the cytochrome b6/f complex, during gametogenesis in Chlamydomonas reinhardtii. Eur J Biochem 204:327–336CrossRefGoogle Scholar
  65. 65.
    Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55PubMedCrossRefGoogle Scholar
  66. 66.
    Varshney RK, Hoisington DA, Tyagy AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24(11):490–499PubMedCrossRefGoogle Scholar
  67. 67.
    Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22:253–259PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Chengwei Liang
    • 1
  • Shaona Cao
    • 2
  • Xiaowen Zhang
    • 3
  • Baohua Zhu
    • 4
  • Zhongliang Su
    • 1
  • Dong Xu
    • 3
  • Xiangyu Guang
    • 5
  • Naihao Ye
    • 3
    Email author
  1. 1.Qingdao University of Science and TechnologyQingdaoChina
  2. 2.Qingdao Agricultural UniversityQingdaoChina
  3. 3.Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  4. 4.Ocean University of ChinaQingdaoChina
  5. 5.School of Ocean SciencesChina University of GeosciencesBeijingChina

Personalised recommendations