Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images

Abstract

Objectives

To develop a radiomics signature to predict locoregional recurrence (LR) and distant metastasis (DM), as extracted from pretreatment 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography/X-ray computed tomography (PET/CT) images in locally advanced nasopharyngeal carcinoma (NPC).

Materials and methods

Eighty-five patients with Stage III–IVB NPC underwent pretreatment [18F]FDG PET/CT scans and received radiotherapy or chemoradiotherapy. 53 of them achieved disease control, and 32 of them failed after treatment (15: LR, 17: DM). A total of 114 radiomic features were extracted from PET/CT images. For univariate analysis, Wilcoxon test and Chi-square test were used to compare median values of features between different treatment outcomes and predict the risk of treatment failure, respectively. For multivariate analysis, all features were grouped into clusters based on Pearson correlation using hierarchical clustering, and the representative feature of each cluster was chosen by the Relief algorithm. Then sequential floating forward selection (SFFS) coupled with a support vector machine (SVM) classifier were used to derive the optimized feature set in terms of the area under receiver operating characteristic (ROC) curve (AUC). The performance of the model was evaluated by leave-one-out-cross-validation, fivefold cross-validation, tenfold cross-validation.

Results

Twenty features had significant differences between disease control and treatment failure. NPC patients with values of Compactness1, Compactness2, Coarseness_NGTDM or SGE_GLGLM above the median as well as patients with values of Irregularity, RLN_GLRLM or GLV_GLSZM below the median, showed a significant (p < 0.05) higher risk of treatment failure (about 50% vs. 25%). The derived radiomics signature consisted of 5 features with the highest AUC value of 0.8290 (sensitivity: 0.8438, specificity: 0.7736) using leave-one-out-cross-validation.

Conclusion

Locoregional recurrence (LR) and DM of locally advanced NPC can be predicted using radiomics analysis of pretreatment [18F]FDG PET/CT. The SFFS feature selection coupled with SVM classifier can derive the optimized feature set with correspondingly highest AUC value for pretreatment prediction of LR and/or DM of NPC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Lee AWM, Ma BBY, Ng WT, Chan ATC. Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol. 2015;33:3356–64.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2.

    Lee AWM, Sze WM, Au JSK, et al. Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience. Int J Radiat Oncol Biol Phys. 2005;61:1107–16.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS, Wang WY. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol. 2003;21:631–7.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Chen QY, Wen YF, Guo L, et al. Concurrent chemoradiotherapy vs radiotherapy alone in stage II nasopharyngeal carcinoma: phase III randomized trial. J Natl Cancer Inst. 2011;103:1761–70.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Yu HS, Wang X, Song AQ, Liu N, Zhang W, Yu L. Concurrent chemoradiotherapy versus radiotherapy alone for locoregionally advanced nasopharyngeal carcinoma. Asian Pac J Cancer Prev. 2012;13:3961–5.

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Lee AWM, Poon YF, Foo W, et al. Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976–1985: overall survival and patterns of failure. Int J Radiat Oncol Biol Phys. 1992;23:261–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Li JG, Yuan X, Zhang LL, et al. A randomized clinical trial comparing prophylactic upper versus whole-neck irradiation in the treatment of patients with node-negative nasopharyngeal carcinoma. Cancer. 2013;119:3170–6.

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Yang TS, Ng KT, Wang HM, Wang CH, Liaw CC, Lai GM. Prognostic factors of locoregionally recurrent nasopharyngeal carcinoma–a retrospective review of 182 cases. Am J Clin Oncol. 1996;19:337–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Du XJ, Tang LL, Mao YP, et al. Circulating EBV DNA, globulin and nodal size predict distant metastasis after intensity-modulated radiotherapy in stage II nasopharyngeal carcinoma. J Cancer. 2016;7:664–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Wan XB, Wei L, Li H, et al. High pretreatment serum lactate dehydrogenase level correlates with disease relapse and predicts an inferior outcome in locally advanced nasopharyngeal carcinoma. Eur J Cancer. 2013;49:2356–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Xia WX, Zhang HB, Shi JL, et al. A prognostic model predicts the risk of distant metastasis and death for patients with nasopharyngeal carcinoma based on pre-treatment serum C-reactive protein and N-classification. Eur J Cancer. 2013;49:2152–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Leoncini E, Vukovic V, Cadoni G, et al. Tumour stage and gender predict recurrence and second primary malignancies in head and neck cancer: a multicentre study within the INHANCE consortium. Eur J Epidemiol. 2018;33:1205.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Krause BJ, Schwarzenbock S, Souvatzoglou M. FDG PET and PET/CT recent results. Cancer Res. 2013;187:351–69.

    CAS  Google Scholar 

  14. 14.

    Xie P, Yue JB, Fu Z, Feng R, Yu JM. Prognostic value of F-18-FDG PET/CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann Oncol. 2010;21:1078–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Tixier F, Le Rest CC, Hatt M, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23:4259.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Zhang B, Ouyang F, Gu D, et al. Advanced nasopharyngeal carcinoma: pre-treatment prediction of progression based on multi-parametric MRI radiomics. Oncotarget. 2017;8:72457–65.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Ouyang FS, Guo BL, Zhang B, et al. Exploration and validation of radiomics signature as an independent prognostic biomarker in stage III–IVb nasopharyngeal carcinoma. Oncotarget. 2017;8:74869–79.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Zhou Z, Folkert M, Iyengar P, Zhang Y, Wang J. Predicting distant failure in lung SBRT using multi-objective radiomics model. Med Phys. 2016;43:3383–3383.

    Article  Google Scholar 

  24. 24.

    Reuze S, Orlhac F, Chargari C, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017;8:43169–79.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    De Bernardi E, Buda A, Guerra L, et al. Radiomics of the primary tumour as a tool to improve (18)F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer. EJNMMI Res. 2018;8:86.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv preprint ar2Xiv:1612.07003v7 2018.

  27. 27.

    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S-150S.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Thibault G, Fertil B, Navarro C, et al. Texture indexes and gray level size zone matrix application to cell nuclei classification. Pattern Recogn Inf Process 2009;140–150.

  29. 29.

    Galloway MM. Texture analysis using grey level run lengths. NASA STI/Recon Technical Report N. 75 1974;18555

  30. 30.

    Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Sys Man Cyb. 1989;19:1264–74.

    Article  Google Scholar 

  31. 31.

    Wang X, Fritz A, Bent F. Texture features from gray level gap length matrix. In: MVA'94 IAPR workshop on machine vision aoolications. Kawasaki, 1994.

  32. 32.

    Sun C, Wee WG. Neighboring gray level dependence matrix for texture classification. Comput Vis Graph Image Process. 1982;23:341–52.

    Article  Google Scholar 

  33. 33.

    He DC, Wang L. Texture features based on texture spectrum. Pattern Recogn. 1991;24:391–9.

    Article  Google Scholar 

  34. 34.

    Horng MH, Sun YN, Lin XZ. Texture feature coding method for classification of liver sonography. Comput Med Imaging Graph. 2002;26:33–42.

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27:1226–38.

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Pudil P, Novovičová J, Kittler J. Floating search methods in feature selection. Pattern Recogn Lett. 1994;15:1119–25.

    Article  Google Scholar 

  37. 37.

    Murphy K, Van GB, Schilham AM, de Hoop BJ, Gietema HA, Prokop M. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal. 2009;13:757–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Klement RJ, Allgauer M, Appold S, et al. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88:732–8.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Hung TM, Wang HM, Kang CJ, et al. Pretreatment (18)F-FDG PET standardized uptake value of primary tumor and neck lymph nodes as a predictor of distant metastasis for patients with nasopharyngeal carcinoma. Oral Oncol. 2013;49:169–74.

    PubMed  Article  Google Scholar 

  40. 40.

    Jeong Y, Yoon SM, Kim JH, et al. Lymph node SUV at pretreatment FDG-PET as a valuable prognostic factor for distant metastasis in nasopharyngeal cancer. Int J Radiat Oncol. 2015;93:E343–4.

    Article  Google Scholar 

  41. 41.

    Schinagl DAX, Span PN, Oyen WJ, Kaanders JHAM. Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol I. 2011;38:1449–58.

    Article  Google Scholar 

  42. 42.

    Kumdee O, Bhongmakapat T, Ritthipravat P. Prediction of nasopharyngeal carcinoma recurrence by neuro-fuzzy techniques. Fuzzy Sets Syst. 2012;203:95–111.

    Article  Google Scholar 

  43. 43.

    M. D. Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients. Sci Rep. 2018;8:1524.

    Article  CAS  Google Scholar 

  44. 44.

    Bogowicz M, Riesterer O, Stark LS, et al. Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncol. 2017;56:1531–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Song J, Cui Y, Pollom E, et al. Prognostic value of intra-radiation treatment FDG-PET and CT imaging features in locally advanced head and neck cancer. Med Phys. 2015;42:3588–9.

    Article  Google Scholar 

  46. 46.

    Du D, Feng H, Lv W, et al. Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images. Mol Imaging Biol. 2020;22:730–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Lv W, Yuan Q, Wang Q, et al. Robustness versus disease differentiation when varying parameter settings in radiomics features: application to nasopharyngeal PET/CT. Eur Radiol. 2018;28:3245–54.

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Tixier F, Hatt M, Le RC, Le PA, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27:4498–509.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Lu L, Lv W, Jiang J, et al. Robustness of radiomic features in [(11)C]choline and [(18)F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imag Biol. 2016;18:935–45.

    CAS  Article  Google Scholar 

  51. 51.

    Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–71.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Lou L, Chen H, Cerny RL, Li Y, Shen Y, Du L. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.

    Article  Google Scholar 

  53. 53.

    Van Velden FH, Kramer GM, Frings V, et al. Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016;18:788–95.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Lv W, Yuan Q, Feng H, et al. Radiomics Analysis of PET and CT Components of PET/CT Imaging Integrated with Clinical Parameters: Application to Prognosis for Nasopharyngeal Carcinoma. Mol Imaging Biol. 2019;21:954–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Xu H, Lv W, Feng H, et al. Subregional radiomics analysis of PET/CT imaging with intratumor partitioning: application to prognosis for nasopharyngeal carcinoma. Mol Imaging Biol. 2020;22:1414–26.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011104.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lijun Lu or Quanshi Wang or Wufan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1098 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Hong, X., Yuan, Q. et al. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Ann Nucl Med (2021). https://doi.org/10.1007/s12149-021-01585-9

Download citation

Keywords

  • Radiomics
  • Prognosis
  • [18F]FDG PET/CT
  • Nasopharyngeal carcinoma