Preclinical PET imaging study of lung cancer with 64CuCl2

Abstract

Objective

Human copper transporter 1 (CTR1) has been proven to be overexpressed in many types of cancer cells, and copper (II)-64 chloride (64CuCl2) has been used as an effective tracer for positron emission tomography (PET) imaging in tumor-bearing animal models. Thus, this study aimed to investigate the potential application of 64CuCl2 in PET imaging of lung cancer through targeting CTR1.

Methods

The expression of CTR1 in a series of lung cancer cell lines was identified by quantitative real-time polymerase chain reaction (Q-PCR), western blot, enzyme-linked immunosorbnent assay (ELISA), and immunofluorescent staining. Then in vitro cell uptake assay of 64CuCl2 was investigated in human lung cancer cell lines with different levels of CTR1 expression. Small animal PET imaging and quantitative analysis were performed in human lung cancer tumor-bearing mice after intravenous injection of 64CuCl2, respectively.

Results

The CTR1 expression in multiple human lung cancer cells was identified and confirmed, and H1299 cell lines with high CTR1 expression, H460 with moderate CTR1, and H1703 with low CTR1 were selected for further experiments. In vitro cellular uptake assay displayed that the 64CuCl2 uptake by these three kinds of cells was positively correlated with their CTR1 expressed levels. The blocking experiments testified the specificity of 64CuCl2 to target CTR1. Moreover, small animal PET imaging and quantitative results showed that 64CuCl2 accumulation in H1299, H460, and H1703 tumor-bearing mice were consistent with CTR1 levels and cell uptake experiments.

Conclusions

The expression of CTR1 in human lung cancer xenograft model could be successfully visualized by 64CuCl2 PET examination. With the expected growth of PET/CT examination to be an essential strategy in clinical lung cancer management, 64CuCl2 has the potential to be a promising PET imaging agent of lung cancer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  2. 2.

    Cancer Stat Facts: Lung and Bronchus Cancer. 2020. https://seer.cancer.gov/statfacts/html/lungb.html. Accessed Feb 2020.

  3. 3.

    Gutfilen B, Al Souza S, Valentini G. Copper-64: a real theranostic agent. Drug Des Dev Ther. 2018;12:3235–45.

    CAS  Article  Google Scholar 

  4. 4.

    Jiang L, Song D, Chen H, Zhang A, Wang H, Cheng Z. Pilot study of (64)CuCl(2) for PET imaging of inflammation. Molecules. 2018;23(2):502.

    Article  Google Scholar 

  5. 5.

    Niccoli Asabella A, Cascini GL, Altini C, Paparella D, Notaristefano A, Rubini G. The copper radioisotopes: a systematic review with special interest to 64Cu. Biomed Res Int. 2014;2014:786463.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Jiang L, Tu Y, Hu X, Bao A, Chen H, Ma X, et al. Pilot study of (64)Cu(I) for PET imaging of melanoma. Sci Rep. 2017;7(1):2574.

    Article  Google Scholar 

  7. 7.

    Kim KI, Jang SJ, Park JH, Lee YJ, Lee TS, Woo KS, et al. Detection of increased Cu-64 uptake by human copper transporter 1 gene overexpression using PET with (CuCl2)-Cu-64 in human breast cancer xenograft model. J Nucl Med. 2014;55(10):1692–8.

    CAS  Article  Google Scholar 

  8. 8.

    Righi S, Ugolini M, Bottoni G, Puntoni M, Iacozzi M, Paparo F, et al. Biokinetic and dosimetric aspects of (64)CuCl2 in human prostate cancer: possible theranostic implications. EJNMMI Res. 2018;8(1):18.

    Article  Google Scholar 

  9. 9.

    Blower PJ, Lewis JS, Zweit J. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol. 1996;23(8):957–80.

    CAS  Article  Google Scholar 

  10. 10.

    Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem. 2018;157:1406–25.

    CAS  Article  Google Scholar 

  11. 11.

    Follacchio GA, De Feo MS, De Vincentis G, Monteleone F, Liberatore M. Radiopharmaceuticals labelled with copper radionuclides: clinical results in human beings. Curr Radiopharm. 2018;11(1):22–33.

    CAS  Article  Google Scholar 

  12. 12.

    Boschi A, Martini P, Janevik-Ivanovska E, Duatti A. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today. 2018;23(8):1489–501.

    CAS  Article  Google Scholar 

  13. 13.

    Chakravarty R, Chakraborty S, Dash A. Cu-64(2+) ions as PET probe: an emerging paradigm in molecular imaging of cancer. Mol Pharm. 2016;13(11):3601–12.

    CAS  Article  Google Scholar 

  14. 14.

    Peng FY, Lu X, Janisse J, Muzik O, Shields AF. PET of human prostate cancer xenografts in mice with increased uptake of (CuCl2)-Cu-64. J Nucl Med. 2006;47(10):1649–52.

    CAS  PubMed  Google Scholar 

  15. 15.

    Qin CX, Liu HG, Chen K, Hu X, Ma XW, Lan XL, et al. Theranostics of malignant melanoma with (CuCl2)-Cu-64. J Nucl Med. 2014;55(5):812–7.

    CAS  Article  Google Scholar 

  16. 16.

    Peng FY, Liu JG, Wu JS, Lu X, Muzik O. Mouse extrahepatic hepatoma detected on MicroPET using copper(II)-64 chloride uptake mediated by endogenous mouse copper transporter 1. Mol Imag Biol. 2005;7(5):325–9.

    Article  Google Scholar 

  17. 17.

    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601–9.

    CAS  Article  Google Scholar 

  18. 18.

    Cheng Z, Xiong Z, Subbarayan M, Chen X, Gambhir SS. 64Cu-labeled alpha-melanocyte-stimulating hormone analog for microPET imaging of melanocortin 1 receptor expression. Bioconjug Chem. 2007;18(3):765–72.

    CAS  Article  Google Scholar 

  19. 19.

    Ferrari C, Asabella AN, Villano C, Giacobbi B, Coccetti D, Panichelli P, et al. Copper-64 dichloride as theranostic agent for glioblastoma multiforme: a preclinical study. Biomed Res Int. 2015;2015:129764.

    Article  Google Scholar 

  20. 20.

    Zhang HY, Cai HW, Lu X, Muzik O, Peng FY. Positron emission tomography of human hepatocellular carcinoma xenografts in mice using copper (II)-64 chloride as a tracer. Acad Radiol. 2011;18(12):1561–8.

    Article  Google Scholar 

  21. 21.

    Avila-Rodriguez MA, Rios C, Carrasco-Hernandez J, Manrique-Arias JC, Martinez-Hernandez R, Garcia-Perez FO, et al. Biodistribution and radiation dosimetry of [(64)Cu]copper dichloride: first-in-human study in healthy volunteers. EJNMMI Res. 2017;7(1):98.

    CAS  Article  Google Scholar 

  22. 22.

    Panichelli P, Villano C, Cistaro A, Bruno A, Barbato F, Piccardo A, et al. Imaging of brain tumors with copper-64 chloride: early experience and results. Cancer Biother Radiopharm. 2016;31(5):159–67.

    CAS  Article  Google Scholar 

  23. 23.

    Piccardo A, Paparo F, Puntoni M, Righi S, Bottoni G, Bacigalupo L, et al. (CuCl2)-Cu-64 PET/CT in prostate cancer relapse. J Nucl Med. 2018;59(3):444–51.

    CAS  Article  Google Scholar 

  24. 24.

    Kim ES, Tang X, Peterson DR, Kilari D, Chow CW, Fujimoto J, et al. Copper transporter CTR1 expression and tissue platinum concentration in non-small cell lung cancer. Lung Cancer. 2014;85(1):88–93.

    Article  Google Scholar 

  25. 25.

    Xu X, Duan L, Zhou B, Ma R, Zhou H, Liu Z. Genetic polymorphism of copper transporter protein 1 is related to platinum resistance in Chinese non-small cell lung carcinoma patients. Clin Exp Pharmacol Physiol. 2012;39(9):786–92.

    CAS  Article  Google Scholar 

  26. 26.

    Yoshida H, Teramae M, Yamauchi M, Fukuda T, Yasui T, Sumi T, et al. Association of copper transporter expression with platinum resistance in epithelial ovarian cancer. Anticancer Res. 2013;33(4):1409–14.

    PubMed  Google Scholar 

  27. 27.

    Yu WK, Wang Z, Fong CC, Liu D, Yip TC, Au SK, et al. Chemoresistant lung cancer stem cells display high DNA repair capability to remove cisplatin-induced DNA damage. Br J Pharmacol. 2017;174(4):302–13.

    CAS  Article  Google Scholar 

  28. 28.

    Ceci F, Fendler W, Eiber M. A new type of prostate cancer imaging: will (64)CuCl2 PET/CT flourish or vanish? J Nucl Med. 2018;59(3):442–3.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by funds from the National Natural Science Foundation of China (81971645 and 81571703), Outstanding Young Talents Program of Shanghai Municipal Commission of Health and Family Planning (2017YQ027), and Major Grant of Research and Development Program of Hunan Province of China (2019SK2252).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Song, D., Ma, X. et al. Preclinical PET imaging study of lung cancer with 64CuCl2. Ann Nucl Med (2020). https://doi.org/10.1007/s12149-020-01491-6

Download citation

Keywords

  • 64CuCl2
  • Human copper transporter 1 (CTR1)
  • PET
  • Lung cancer