Skip to main content
Log in

Effects of rs591323 on serotonin transporter availability in healthy male subjects

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

We aimed to investigate the association between genetic factors of SNPs dopamine transporter (DAT) and serotonin transporter (SERT) availabilities in healthy controls.

Methods

The study population consisted of healthy controls with screening 123I-FP-CIT single-photon emission computed tomography. Specific binding of 123I-FP-CIT regarding DAT and SERT was calculated using a region of interest analysis. VOI template was applied to measure specific binding ratios (SBRs) of caudate nucleus, putamen, striatum, midbrain, and pons.

Results

One hundred sixty healthy controls (male 106, female 54, 61.0 ± 11.5 years) were included in this study. Sex difference did not exist in DAT availabilities of caudate nucleus (p = 0.5344), putamen (p = 0.5006), and striatum (p = 0.5056). However, male subjects had higher SERT availabilities of both midbrain (p = 0.0436), and pons (p = 0.0061). Therefore, we analyzed the effect of SNP on DAT availabilities of subjects in all, and that on SERT availabilities of males and females separately. None of 19 SNPs included in this study showed the effect on DAT availabilities. However, rs591323 in Fibroblast Growth Factor 20 on chromosome 8 had a significant impact on SERT availability of both midbrain (p = 0.0056) and pons (p = 0.0007).

Conclusion

SNP rs591323 of risk loci for Parkinson’s disease is associated with SERT availability of healthy male subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46(9):989–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rawlik K, Rowlatt A, Tenesa A. Imputation of DNA methylation levels in the brain implicates a risk factor for Parkinson’s disease. Genetics. 2016;204(2):771–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Booth TC, Nathan M, Waldman AD, Quigley AM, Schapira AH, Buscombe J. The role of functional dopamine-transporter SPECT imaging in parkinsonian syndromes, part 1. AJNR Am J Neuroradiol. 2015;36(2):229–35.

    Article  PubMed  CAS  Google Scholar 

  4. Zipursky RB, Meyer JH, Verhoeff NP. PET and SPECT imaging in psychiatric disorders. Can J Psychiatry. 2007;52(3):146–57.

    Article  PubMed  Google Scholar 

  5. Marshall V, Grosset D. Role of dopamine transporter imaging in routine clinical practice. Mov Disord. 2003;18(12):1415–23.

    Article  PubMed  Google Scholar 

  6. Koch W, Unterrainer M, Xiong G, Bartenstein P, Diemling M, Varrone A, et al. Extrastriatal binding of [(1)(2)(3)I]FP-CIT in the thalamus and pons: gender and age dependencies assessed in a European multicentre database of healthy controls. Eur J Nucl Med Mol Imaging. 2014;41(10):1938–46.

    Article  PubMed  CAS  Google Scholar 

  7. Joutsa J, Johansson J, Seppanen M, Noponen T, Kaasinen V. Dorsal-to-ventral shift in midbrain dopaminergic projections and increased thalamic/raphe serotonergic function in early Parkinson disease. J Nucl Med Off Publ Soc Nucl Med. 2015;56(7):1036–41.

    CAS  Google Scholar 

  8. Booij J, de Jong J, de Bruin K, Knol R, de Win MM, van Eck-Smit BL. Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects. J Nucl Med Off Publ Soc Nucl Med. 2007;48(3):359–66.

    CAS  Google Scholar 

  9. Roselli F, Pisciotta NM, Pennelli M, Aniello MS, Gigante A, De Caro MF, et al. Midbrain SERT in degenerative parkinsonisms: a 123I-FP-CIT SPECT study. Mov Disord. 2010;25(12):1853–9.

    Article  PubMed  Google Scholar 

  10. van de Giessen E, de Win MM, Tanck MW, van den Brink W, Baas F, Booij J. Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med. 2009;50(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  11. Parkinson Progression Marker I. The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol. 2011;95(4):629–35.

    Article  Google Scholar 

  12. Garcia-Gomez FJ, Garcia-Solis D, Luis-Simon FJ, Marin-Oyaga VA, Carrillo F, Mir P, et al. Elaboration of the SPM template for the standardization of SPECT images with 123I-ioflupane. Rev Esp Med Nucl Imagen Mol. 2013;32(6):350–6.

    PubMed  CAS  Google Scholar 

  13. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.

    Article  PubMed  CAS  Google Scholar 

  14. Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, et al. Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med Off Publ Soc Nucl Med. 2000;41(1):36–44.

    CAS  Google Scholar 

  15. van Dyck CH, Malison RT, Seibyl JP, Laruelle M, Klumpp H, Zoghbi SS, et al. Age-related decline in central serotonin transporter availability with [(123)I]beta-CIT SPECT. Neurobiol Aging. 2000;21(4):497–501.

    Article  PubMed  Google Scholar 

  16. Lavalaye J, Booij J, Reneman L, Habraken JB, van Royen EA. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur J Nucl Med. 2000;27(7):867–9.

    Article  PubMed  CAS  Google Scholar 

  17. France M, Skorich E, Kadrofske M, Swain GM, Galligan JJ. Sex-related differences in small intestinal transit and serotonin dynamics in high-fat-diet-induced obesity in mice. Exp Physiol. 2016;101(1):81–99.

    Article  PubMed  CAS  Google Scholar 

  18. Sinclair D, Purves-Tyson TD, Allen KM, Weickert CS. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology. 2014;231(8):1581–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Redensek S, Trost M, Dolzan V. Genetic determinants of Parkinson’s disease: can they help to stratify the patients based on the underlying molecular defect? Front Aging Neurosci. 2017;9:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Contin M, Martinelli P, Mochi M, Albani F, Riva R, Scaglione C, et al. Dopamine transporter gene polymorphism, spect imaging, and levodopa response in patients with Parkinson disease. Clin Neuropharmacol. 2004;27(3):111–5.

    Article  PubMed  CAS  Google Scholar 

  21. Muellner J, Gharrad I, Habert MO, Kas A, Martini JB, Cormier-Dequaire F, et al. Dopaminergic denervation severity depends on COMT Val158Met polymorphism in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(5):471–6.

    Article  PubMed  Google Scholar 

  22. Sun XY, Wang L, Cheng L, Li NN, Lu ZJ, Li JY, et al. Genetic analysis of FGF20 in Chinese patients with Parkinson’s disease. Neurol Sci. 2017;38(5):887–91.

    Article  PubMed  Google Scholar 

  23. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet. 2008;82(2):283–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. van der Walt JM, Noureddine MA, Kittappa R, Hauser MA, Scott WK, McKay R, et al. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet. 2004;74(6):1121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Faraone SV, Spencer TJ, Madras BK, Zhang-James Y, Biederman J. Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol Psychiatry. 2014;19(8):880–9.

    Article  PubMed  CAS  Google Scholar 

  26. Willeit M, Praschak-Rieder N. Imaging the effects of genetic polymorphisms on radioligand binding in the living human brain: A review on genetic neuroreceptor imaging of monoaminergic systems in psychiatry. Neuroimage. 2010;53(3):878–92.

    Article  PubMed  CAS  Google Scholar 

  27. Chen PS, Yeh TL, Lee IH, Lin CB, Tsai HC, Chen KC, et al. Effects of C825T polymorphism of the GNB3 gene on availability of dopamine transporter in healthy volunteers–a SPECT study. Neuroimage. 2011;56(3):1526–30.

    Article  PubMed  CAS  Google Scholar 

  28. Chang WH, Lee IH, Chen KC, Chi MH, Chiu NT, Yao WJ, et al. Oxytocin receptor gene rs53576 polymorphism modulates oxytocin–dopamine interaction and neuroticism traits—a SPECT study. Psychoneuroendocrinology. 2014;47:212–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

PPMI—a public–private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including abbVie, Avid, Biogen, Bristol-Myers Squibb, COVANCE, GE Healthcare, Genentech, GlaxoSmithKline, Lundbeck, Lilly, Merck, MesoScaleDiscovery, Pfizer, Piramal, Roche, Sanofi Genzyme, Servier, TEVA, and UCB.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoungjune Pak, Hyun-Yeol Nam, Seong-Jang Kim or In Joo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, K., Nam, HY., Shin, S. et al. Effects of rs591323 on serotonin transporter availability in healthy male subjects. Ann Nucl Med 32, 431–436 (2018). https://doi.org/10.1007/s12149-018-1262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-018-1262-z

Keywords

Navigation