Advertisement

Annals of Nuclear Medicine

, Volume 32, Issue 4, pp 272–280 | Cite as

The feasibility of 18F-FES and 18F-FDG microPET/CT for early monitoring the effect of fulvestrant on sensitizing docetaxel by downregulating ERα in ERα+ breast cancer

  • Shuai Liu
  • Bingxin Gu
  • Jianping Zhang
  • Yongping Zhang
  • Xiaoping Xu
  • Huiyu Yuan
  • Yingjian Zhang
  • Zhongyi Yang
Original Article
  • 126 Downloads

Abstract

Objective

Our study aimed to investigate the feasibility of PET/CT for monitoring the influence of fulvestrant on sensitizing docetaxel by downregulating ERα in ERα+ breast cancer.

Methods

Docetaxel-insensitive ERα+ breast cancer cells (DIS-ZR751) were established, identified and cultured. ERα expression, toxicity and viability of DIS-ZR751 were analyzed before and after treatment in vitro. DIS-ZR751-bearing nude mice were randomly divided into four groups according to different treatments: blank (DIS-ZR751), docetaxel (DIS-ZR751+DOC), fulvestrant (DIS-ZR751+FUL), and combination treatment (DIS-ZR751+DOC+FUL). 18F-FES and 18F-FDG microPECT/CT scans were performed before and 7, 14 days after treatment. Absolute %ID/gmax was calculated.

Results

ERα expression level and growth rate of DIS-ZR751 were higher than control group and decreased dramatically after docetaxel and fulvestrant combination treatment. 18F-FES and 18F-FDG PET/CT imaging in vivo revealed that ERα expression in DIS-ZR751 treated with fulvestrant, and tumor activity in DIS-ZR751 treated with combination drugs decreased as early as 7 days after treatment.

Conclusions

18F-FES and 18F-FDG PET/CT were feasible for early monitoring the effect of fulvestrant on sensitizing docetaxel by downregulation of ERα in ERα+ breast cancer noninvasively.

Keywords

18F-FES 18F-FDG Estrogen receptor alpha Fulvestrant Docetaxel insensitivity 

Abbreviations

ER

Estrogen reporter alpha

ERα+

Estrogen reporter alpha positive

DIS-ZR751

Docetaxel-insensitive ERα+ breast cancer cells

DIS-ZR751+FUL

DIS-ZR751 with fulvestrant treatment

DIS-ZR751+DOC

DIS-ZR751 with docetaxel treatment

DIS-ZR751+DOC+FUL

DIS-ZR751 with docetaxel and fulvestrant combination treatment

FBS

Fetalbovine serum

dNTP

Deoxy-ribonucleoside triphosphate

RNasin

RNase inhibitor

CCK8

Cell counting kit-8

RT-qPCR

Quantitative reverse transcription PCR

18F-FDG

2-deoxy-2-[18F]fluoro-d-glucose

18F-FES

16α-[18F]fluoro-17β-estrogen

PET/CT

Positron emission tomography/computed tomography

ROC

Region of interest

%ID/gmax

The max of percentage injected dose per gram

EGFR

Epidermal growth factor receptor

TGF-α

Transforming growth factor alpha

IHC

Immunohistochemical analysis

GLUT-1

Glucose transporter-1

Notes

Acknowledgements

We wish to thank Jianmin Luo for excellent technical assistances. This study was funded by the Shanghai Committee of Science and Technology Fund (15ZR1407600) for Zhongyi Yang.

Funding

This study was funded by the Shanghai Committee of Science and Technology Fund (15ZR1407600).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Blamey RW, Hornmark-Stenstam B, Ball G, Blichert-Toft M, Cataliotti L, Fourquet A, et al. ONCOPOOL—a European database for 16,944 cases of breast cancer. Eur J Cancer (Oxf Engl 1990). 2010;46:56–71.CrossRefGoogle Scholar
  2. 2.
    Kurebayashi J. Endocrine-resistant breast cancer: underlying mechanisms and strategies for overcoming resistance. Breast Cancer (Tokyo Jpn). 2003;10:112–9.CrossRefGoogle Scholar
  3. 3.
    Murphy L, Cherlet T, Lewis A, Banu Y, Watson P. New insights into estrogen receptor function in human breast cancer. Ann Med. 2003;35:614–31.CrossRefPubMedGoogle Scholar
  4. 4.
    Sui M, Huang Y, Park BH, Davidson NE, Fan W. Estrogen receptor alpha mediates breast cancer cell resistance to paclitaxel through inhibition of apoptotic cell death. Cancer Res. 2007;67:5337–44.CrossRefPubMedGoogle Scholar
  5. 5.
    Sui M, Jiang D, Hinsch C, Fan W. Fulvestrant (ICI 182, 780) sensitizes breast cancer cells expressing estrogen receptor alpha to vinblastine and vinorelbine. Breast Cancer Res Treat. 2010;121:335–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Henderson IC, Berry DA, Demetri GD, Cirrincione CT, Goldstein LJ, Martino S, et al. Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol. 2003;21:976–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Montero A, Fossella F, Hortobagyi G, Valero V. Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol. 2005;6:229–39.CrossRefPubMedGoogle Scholar
  8. 8.
    Chang J, Sui M, Fan W. Estrogen receptor alpha attenuates therapeutic efficacy of paclitaxel on breast xenograft tumors. Breast Cancer Res Treat. 2012;134:969–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Ikeda H, Taira N, Nogami T, Shien K, Okada M, Shien T, et al. Combination treatment with fulvestrant and various cytotoxic agents (doxorubicin, paclitaxel, docetaxel, vinorelbine, and 5-fluorouracil) has a synergistic effect in estrogen receptor-positive breast cancer. Cancer Sci. 2011;102:2038–42.CrossRefPubMedGoogle Scholar
  10. 10.
    McGuire AH, Dehdashti F, Siegel BA, Lyss AP, Brodack JW, Mathias CJ, et al. Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med. 1991;32:1526–31.PubMedGoogle Scholar
  11. 11.
    Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med. 2008;49:367–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang Z, Sun Y, Xue J, Yao Z, Xu J, Cheng J, et al. Can positron emission tomography/computed tomography with the dual tracers fluorine-18 fluoroestradiol and fluorodeoxyglucose predict neoadjuvant chemotherapy response of breast cancer?—a pilot study. PloS one. 2013;8:e78192.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sun Y, Yang Z, Zhang Y, Xue J, Wang M, Shi W, et al. The preliminary study of 16alpha-[18F]fluoroestradiol PET/CT in assisting the individualized treatment decisions of breast cancer patients. PloS one. 2015;10:e0116341.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. (San Diego, Calif) 2001;25:402–8.Google Scholar
  15. 15.
    Zhang YPZY., Wang MW, et al. Fully automated synthesis of 16a [18F] fluoro-17b-estrogen using Explora GN/LC dual module (in chinese). Zhonghua He Yi Xue Za Zhi. 2011;31:196–200.Google Scholar
  16. 16.
    Osako T, Nishimura R, Okumura Y, Toyozumi Y, Arima N. Predictive significance of the proportion of ER-positive or PgR-positive tumor cells in response to neoadjuvant chemotherapy for operable HER2-negative breast cancer. Exp Ther Med. 2012;3:66–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Bailey ST, Shin H, Westerling T, Liu XS, Brown M. Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci USA. 2012;109:18060–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lips EH, Mulder L, de Ronde JJ, Mandjes IA, Vincent A, Vrancken Peeters MT, et al. Neoadjuvant chemotherapy in ER+ HER2-breast cancer: response prediction based on immunohistochemical and molecular characteristics. Breast Cancer Res Treat. 2012;131:827–36.CrossRefPubMedGoogle Scholar
  19. 19.
    Wu L, Tannock IF. Effect of the selective estrogen receptor modulator arzoxifene on repopulation of hormone-responsive breast cancer xenografts between courses of chemotherapy. Clin Cancer Res. 2005;11:8195–200.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen D, Hackl W, Ortmann O, Treeck O. Effects of a combination of exemestane and paclitaxel on human tumor cells in vitro. Anti Cancer Drugs. 2004;15:55–61.CrossRefPubMedGoogle Scholar
  21. 21.
    Martin LA, Pancholi S, Chan CM, Farmer I, Kimberley C, Dowsett M, et al. The anti-oestrogen ICI 182, 780, but not tamoxifen, inhibits the growth of MCF-7 breast cancer cells refractory to long-term oestrogen deprivation through down-regulation of oestrogen receptor and IGF signalling. Endocr Relat Cancer. 2005;12:1017–36.CrossRefPubMedGoogle Scholar
  22. 22.
    Robertson JF. Faslodex (ICI 182, 780), a novel estrogen receptor downregulator—future possibilities in breast cancer. J Steroid Biochem Mol Biol. 2001;79:209–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Heidari P, Deng F, Esfahani SA, Leece AK, Shoup TM, Vasdev N, et al. Pharmacodynamic imaging guides dosing of a selective estrogen receptor degrader. Clin Cancer Res. 2015;21:1340–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    He S, Wang M, Yang Z, Zhang J, Zhang Y, Luo J, et al. Comparison of 18F-FES, 18F-FDG, and 18F-FMISO pet imaging probes for early prediction and monitoring of response to endocrine therapy in a mouse xenograft model of ER-positive breast cancer. PloS one. 2016;11:e0159916.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2018

Authors and Affiliations

  • Shuai Liu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Bingxin Gu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Jianping Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Yongping Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Xiaoping Xu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Huiyu Yuan
    • 1
    • 2
    • 3
    • 4
    • 5
  • Yingjian Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Zhongyi Yang
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.Center for Biomedical ImagingFudan UniversityShanghaiChina
  4. 4.Shanghai Engineering Research Center of Molecular Imaging ProbesShanghaiChina
  5. 5.Key Laboratory of Nuclear Physics and Ion-beam Application(MOE)Fudan UniversityShanghaiChina

Personalised recommendations