Skip to main content
Log in

Modular and reconfigurable gas chromatography/differential mobility spectrometry (GC/DMS) package for detection of volatile organic compounds (VOCs)

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Due to the versatility of present day microcontroller boards and open source development environments, new analytical chemistry devices can now be built outside of large industry and instead within smaller individual groups. While there are a wide range of commercial devices available for detecting and identifying volatile organic compounds (VOCs), most of these devices use their own proprietary software and complex custom electronics, making modifications or reconfiguration of the systems challenging. The development of microprocessors for general use, such as the Arduino prototyping platform, now enables custom chemical analysis instrumentation. We have created an example system using commercially available parts, centered around on differential mobility spectrometer (DMS) device. The Modular Reconfigurable Gas Chromatography - Differential Mobility Spectrometry package (MR-GC-DMS) has swappable components allowing it to be quickly reconfigured for specific application purposes as well as broad, generic use. The MR-GC-DMS has a custom user-friendly graphical user interface (GUI) and precisely tuned proportional-integral-derivative controller (PID) feedback control system managing individual temperature-sensitive components. Accurate temperature control programmed into the microcontroller greatly increases repeatability and system performance. Together, this open-source platform enables researchers to quickly combine DMS devices in customized configurations for new chemical sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54(3):487–500 (in English)

    Article  CAS  PubMed  Google Scholar 

  2. Johnston JM, Williams M, Waggoner LP, Edge CC, Dugan RE, Hallowell SF, (1998) Canine detection odor signatures for mine-related explosives. (in English), Detection and Remediation Technologies for Mines and Minelike Targets Iii, Pts 1 and 2, vol. 3392, 490–501

  3. Williams M et al (1998) Canine detection odor signatures for explosives. Enforcement and Security Technologies 3575:291–301 (in English)

    Article  CAS  Google Scholar 

  4. Simon AG, Mills DK, Furton KG (2017) Chemical and canine analysis as complimentary techniques for the identification of active odors of the invasive fungus, Raffaelea lauricola. Talanta 168:320–328 (in English)

    Article  CAS  PubMed  Google Scholar 

  5. Furton KG, Caraballo NI, Cerreta MM, Holness HK (2015) Advances in the use of odour as forensic evidence through optimizing and standardizing instruments and canines. Philosophical Transactions of the Royal Society B-Biological Sciences 370(1674) (in English)

  6. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia I (2015) Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst 140(5):1391–1410 (in English)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia I (2015) Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 140(5):1376–1390 (in English)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eiceman GA, Karpas Z, Hill HH (2014) Ion Mobility Spectrometry, 3rd Edition, (in English), Ion Mobility Spectrometry, 3rd Edition, pp. 1–400

  9. Johnson PV, Beegle LW, Kim HI, Eiceman GA, Kanik I (2007) Ion mobility spectrometry in space exploration. Int J Mass Spectrom 262(1–2):1–15 (in English)

    Article  CAS  Google Scholar 

  10. Hernandez-Mesa M, Escourrou A, Monteau F, Le Bizec B, Dervilly-Pinel G (2017) Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues. Trac Trends Anal Chem 94:39–53 (in English)

    Article  CAS  Google Scholar 

  11. Marquez-Sillero I, Cardenas S, Sielemann S, Valcarcel M (2014) On-line headspace-multicapillary column-ion mobility spectrometry hyphenation as a tool for the determination of off-flavours in foods. J Chromatogr A 1333:99–105 (in English)

    Article  CAS  PubMed  Google Scholar 

  12. Vautz W, Zimmermann D, Hartmann M, Baumbach JI, Nolte J, Jung J (2006) Ion mobility spectrometry for food quality and safety. Food Addit Contam 23(11):1064–1073 (in English)

    Article  CAS  PubMed  Google Scholar 

  13. Schivo M et al (2013) A mobile instrumentation platform to distinguish airway disorders. J Breath Res 7(1) (in English)

  14. Criado-Garcia L, Ruszkiewicz DM, Eiceman GA, Thomas CLP (2016) A rapid and non-invasive method to determine toxic levels of alcohols and gamma-hydroxybutyric acid in saliva samples by gas chromatography-differential mobility spectrometry. J Breath Res 10(1) (in English)

  15. Pasupuleti D, Eiceman GA, Pierce KM (2016) Classification of biodiesel and fuel blends using gas chromatography differential mobility spectrometry with cluster analysis and isolation of C18:3 me by dual ion filtering. Talanta 155:278–288 (in English)

    Article  CAS  PubMed  Google Scholar 

  16. Armenta S, Alcala M, Blanco M (2011) A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal Chim Acta 703(2):114–123 (in English)

    Article  CAS  PubMed  Google Scholar 

  17. Eiceman GA, Nazarov EG, Miller RA, Krylov EV, Zapata AM (2002) Micro-machined planar field asymmetric ion mobility spectrometer as a gas chromatographic detector. Analyst 127(4):466–471 (in English)

    Article  CAS  PubMed  Google Scholar 

  18. Eiceman GA et al (2001) Miniature radio-frequency mobility analyzer as a gas chromatographic detector for oxygen-containing volatile organic compounds, pheromones and other insect attractants. J Chromatogr A 917(1–2):205–217 (in English)

    Article  CAS  PubMed  Google Scholar 

  19. Miller RA, Eiceman GA, Nazarov EG, King AT (2000) A novel micromachined high-field asymmetric waveform-ion mobility spectrometer. Sensors Actuators B Chem 67(3):300–306 (in English)

    Article  CAS  Google Scholar 

  20. Miller RA, Nazarov EG, Eiceman GA, King AT (2001) A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection. Sensors Actuators A Phys 91(3):301–312 (in English)

    Article  CAS  Google Scholar 

  21. Miller RA, Zapata A, Nazarov EG, Krylov E, Eiceman GA (2002) High performance micromachined planar field-asymmetric ion mobility spectrometers for chemical and biological compound detection. Biomems and Bionanotechnology 729:139–147 (in English)

    CAS  Google Scholar 

  22. Krylov E, Nazarov EG, Miller RA, Tadjikov B, Eiceman GA (2002) Field dependence of mobilities for gas-phase-protonated monomers and proton-bound dimers of ketones by planar field asymmetric waveform ion mobility spectrometer (PFAIMS). J Phys Chem A 106(22):5437–5444 (in English)

    Article  CAS  PubMed  Google Scholar 

  23. Eiceman GA, Krylov EV, Nazarov EG, Miller RA (2004) Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Anal Chem 76(17):4937–4944 (in English)

    Article  CAS  PubMed  Google Scholar 

  24. Eiceman GA, Tarassov A, Funk PA, Hughs SE, Nazarov EG, Miller RA (2003) Discrimination of combustion fuel sources using gas chromatography-planar field asymmetric-waveform ion mobility spectrometry. J Sep Sci 26(6–7):585–593 (in English)

    Article  Google Scholar 

  25. Aksenov AA et al (2014) Detection of Huanglongbing disease using differential mobility spectrometry. Anal Chem 86(5):2481–2488 (in English)

    Article  CAS  PubMed  Google Scholar 

  26. McCartney MM, Spitulski SL, Pasamontes A, Peirano DJ, Schirle MJ, Cumeras R, Simmons JD, Ware JL, Brown JF, Poh AJY, Dike SC, Foster EK, Godfrey KE, Davis CE (2016) Coupling a branch enclosure with differential mobility spectrometry to isolate and measure plant volatiles in contained greenhouse settings. Talanta 146:148–154 (in English)

    Article  CAS  PubMed  Google Scholar 

  27. Eiceman GA, Nazarov EG, Tadjikov B, Miller RA (2000) Monitoring volatile organic compounds in ambient air inside and outside buildings with the use of a radio-frequency-based ion-mobility analyzer with a micromachined drift tube. Field Analytical Chemistry and Technology 4(6):297–308 (in English)

    Article  CAS  Google Scholar 

  28. Aksenov AA, Kapron J, Davis CE (2012) Predicting compensation voltage for singly-charged ions in high-field asymmetric waveform ion mobility spectrometry (FAIMS). J Am Soc Mass Spectrom 23(10):1794–1798 (in English)

    Article  CAS  PubMed  Google Scholar 

  29. Krebs MD, Mansfield B, Yip P, Cohen SJ, Sonenshein AL, Hitt BA, Davis CE (2006) Novel technology for rapid species-specific detection of Bacillus spores. Biomol Eng 23(2–3):119–127 (in English)

    Article  CAS  PubMed  Google Scholar 

  30. Krebs MD, Zapata AM, Nazarov EG, Miller RA, Costa IS, Sonenshein AL, Davis CE (2005) Detection of biological and chemical agents using differential mobility spectrometry (DMS) technology. IEEE Sensors J 5(4):696–703 (in English)

    Article  CAS  Google Scholar 

  31. Prasad S, Pierce KM, Schmidt H, Rao JV, Güth R, Synovec RE, Smith GB, Eiceman GA (2008) Constituents with independence from growth temperature for bacteria using pyrolysis-gas chromatography/differential mobility spectrometry with analysis of variance and principal component analysis. Analyst 133(6):760–767 (in English)

    Article  CAS  PubMed  Google Scholar 

  32. Prasad S, Pierce KM, Schmidt H, Rao JV, Güth R, Bader S, Synovec RE, Smith GB, Eiceman GA (2007) Analysis of bacteria by pyrolysis gas chromatography-differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Analyst 132(10):1031–1039 (in English)

    Article  CAS  PubMed  Google Scholar 

  33. Prasad S, Schmidt H, Lampen P, Wang M, Güth R, Rao JV, Smith GB, Eiceman GA (2006) Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry. Analyst 131(11):1216–1225 (in English)

    Article  CAS  PubMed  Google Scholar 

  34. Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA (2006) Pressure effects in differential mobility spectrometry. Anal Chem 78(22):7697–7706 (in English)

    Article  CAS  PubMed  Google Scholar 

  35. Menlyadiev MR, Tarassov A, Kielnecker AM, Eiceman GA (2015) Tandem differential mobility spectrometry with ion dissociation in air at ambient pressure and temperature. Analyst 140(9):2995–3002 (in English)

    Article  CAS  PubMed  Google Scholar 

  36. Menlyadiev MR, Eiceman GA (2014) Tandem differential mobility spectrometry in purified air for high-speed selective vapor detection. Anal Chem 86(5):2395–2402 (in English)

    Article  CAS  PubMed  Google Scholar 

  37. Krylov EV, Coy SL, Nazarov EG (2009) Temperature effects in differential mobility spectrometry. Int J Mass Spectrom 279(2–3):119–125 (in English)

    Article  CAS  Google Scholar 

  38. Krebs MD, Kang JM, Cohen SJ, Lozow JB, Tingley RD, Davis CE (2006) Two-dimensional alignment of differential mobility spectrometer data. Sensors Actuators B Chem 119(2):475–482 (in English)

    Article  CAS  Google Scholar 

  39. Krebs MD, Tingley RD, Zeskind JE, Holmboe ME, Kang JM, Davis CE (2006) Alignment of gas chromatography-mass spectrometry data by landmark selection from complex chemical mixtures. Chemom Intell Lab Syst 81(1):74–81 (in English)

    Article  CAS  Google Scholar 

  40. Peirano DJ, Pasamontes A, Davis CE (2016) Supervised semi-automated data analysis software for gas chromatography/differential mobility spectrometry (GC/DMS) metabolomics applications. Int J Ion Mobil Spectrom 19(2–3):155–166 (in English)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCartney MM, Roubtsova TV, Yamaguchi MS, Kasuga T, Ebeler SE, Davis CE, Bostock RM (2018) Effects of Phytophthora ramorum on volatile organic compound emissions of Rhododendron using gas chromatography-mass spectrometry. Anal Bioanal Chem 410(5):1475–1487 (in English)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Partial support was provided by: NIH award U01 EB0220003-01 (CED, NJK); NSF award #1255915 (CED); NIH award UG3-OD023365 (CED, NJK); the NIH National Center for Advancing Translational Sciences (NCATS) through grant #UL1 TR000002 (CED, NJK); and NIH award 1P30ES023513-01A1 (CED, NJK). Student support was partially provided by the US Department of Veterans Affairs, Post-9/11 GI-Bill (DJP), and the National Science Foundation award 1343479 Veteran’s Research Supplement (DJP). The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies. The authors would like to thank members of Richard Bostock’s laboratory, especially Tatiana Roubtsova, for making their rhododendron plants available for VOC sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina E. Davis.

Additional information

Daniel J. Peirano is presently at Google, Inc.

Michael J. Schirle is presently at Gener8, Inc.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anishchenko, I.M., McCartney, M.M., Fung, A.G. et al. Modular and reconfigurable gas chromatography/differential mobility spectrometry (GC/DMS) package for detection of volatile organic compounds (VOCs). Int. J. Ion Mobil. Spec. 21, 125–136 (2018). https://doi.org/10.1007/s12127-018-0240-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-018-0240-4

Keywords

Navigation