Skip to main content
Log in

A compact olfactometer for IMS measurements and testing human perception

  • Technical Report
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Production of easily controllable and measurable odor stimuli is needed when studying human olfaction, olfaction-related physiology and psychological reactions to odors. Controlled odor producing instruments are called olfactometers. For testing and calibrating new olfactometers or sensor arrays, a reliable input signal has to be produced to verify their accurate functionality. A common input signal in various olfactometers has been the use of volatile organic compounds (VOCs) in gaseous form. We present a compact olfactometer able to produce controlled continuous odor stimuli from three individual channels. For measuring the output gas flow, we used a ChemPro 100i (Environics, Finland) device that is based on aspiration ion mobility spectrometry (aIMS). IMS is a robust and sensitive method for measuring VOCs and is used especially in detecting toxic industrial chemicals and chemical warfare agents, but the technology is also suitable for other olfactory-related applications. The olfactometer was used to produce synthetic jasmine scent using three main odor components from jasmine oil and all the components were diluted using propylene glycol. The dilutions were supplied to the system using programmable syringe pumps, which guided the dilutions to individual evaporation units. We conducted experiments to verify the functionality of our olfactometer. Analysis of the ChemPro100i data showed that olfactometer can use different odor components to produce continuous, stable output flows with controlled concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bensafi M, Rouby C, Farget V, Bertrand B, Vigouroux M, Holley A (2003) Perceptual, affective, and cognitive judgments of odors: pleasantness and handedness effects. Brain Cogn 51(3):270–275. https://doi.org/10.1016/S0278-2626(03)00019-8

    Article  PubMed  Google Scholar 

  2. Chu, S. and Downes, J. J. (2000) ‘Odour-evoked autobiographical memories: psychological investigations of proustian phenomena.’, Chem Senses. England, 25(1), pp. 111–116

  3. Stevenson, R. J. (2010) ‘An initial evaluation of the functions of human olfaction.’, Chem Senses England, 35(1), pp. 3–20. https://doi.org/10.1093/chemse/bjp083

  4. Doty, R. L., Reyes, P. F. and Gregor, T. (1987) ‘Presence of both odor identification and detection deficits in Alzheimer’s disease.’, Brain Res Bull. United States, 18(5), pp. 597–600

  5. Hedner, M., Larsson M., Arnold N., Zucco G. M., Hummel T. (2010) ‘Cognitive factors in odor detection, odor discrimination, and odor identification tasks.’, J Clin Exp Neuropsychol England, 32(10), pp. 1062–1067. https://doi.org/10.1080/13803391003683070

  6. Richardson, B. E., Vander Woude E. A., Sudan R., Thompson J. S., Leopold D. A. (2004) ‘Altered olfactory acuity in the morbidly obese.’, Obes Surg United States, 14(7), pp. 967–969. https://doi.org/10.1381/0960892041719617

  7. Brooks, S. W., Moore D. R., Marzouk E. B., Glenn F. R., Hallock R. M. (2015) ‘Canine olfaction and electronic nose detection of volatile organic compounds in the detection of Cancer: a review’. Cancer Investig 33(9):411–419. https://doi.org/10.3109/07357907.2015.1047510

  8. Glatz, R. and Bailey-Hill, K. (2011) ‘Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing’, Prog Neurobiol. Elsevier Ltd, 93(2), pp. 270–296. https://doi.org/10.1016/j.pneurobio.2010.11.004

  9. Huotari M (2004) Odour Sensing by Insect Olfactory receptor neurons: Measurements of Odours based on Action Potential analysis, Academic dissertation, University of Oulu. Available: http://jultika.oulu.fi/files/isbn9514275918.pdf. Accessed 25 May 2017

  10. Nakamoto T, Kakizaki M, Suzuki Y, Mitsuno H, Kanzaki R (2004) ‘Response analysis of odor sensor based upon insect olfactory receptors using image processing method’. IEEE, Valencia

  11. Utriainen M, Kärpänoja E, Paakkanen H (2003) Combining miniaturized ion mobility spectrometer and metal oxide gas sensor for the fast detection of toxic chemical vapors. Sensors and Actuators, B: Chemical 93(1–3):17–24. https://doi.org/10.1016/S0925-4005(03)00337-X

  12. James, D., Scott S. M., Ali Z., O’Hare W. T. (2005) ‘Chemical sensors for electronic nose systems’, Microchim Acta, 149(1–2), pp. 1–17. https://doi.org/10.1007/s00604-004-0291-6

  13. Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9(1):5099–5148. https://doi.org/10.3390/s110101105

  14. Tang K-T, Chiu SW, Pan CH, Hsieh HY, Liang YS, Liu SC (2010) Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 10(10):9179–9193. https://doi.org/10.3390/s101009179

    Article  PubMed  Google Scholar 

  15. Omatu S (2013) ‘Odor classification by neural networks’, Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), Berlin, 2013 September, pp. 309–314. https://doi.org/10.1109/IDAACS.2013.6662695

  16. Friedrich MJ (2009) ‘Scientists seek to sniff out diseases. JAMA 301(6):585–586. https://doi.org/10.1001/jama.2009.90

  17. Gutiérrez J, Horrillo MC (2014) Advances in artificial olfaction: sensors and applications. Talanta 124:95–105. https://doi.org/10.1016/j.talanta.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  18. Berna A (2010) Metal oxide sensors for electronic noses and their application to food analysis. Sensors 10(4):3882–3910. https://doi.org/10.3390/s100403882

  19. Fang X, Guo X, Shi H, Cai Q (2010) ‘Determination of Ammonia nitrogen in wastewater using electronic nose’. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4. https://doi.org/10.1109/ICBBE.2010.5515426

  20. Giordani, D. S. et al. (2007) ‘Biodiesel characterization using electronic nose and artificial neural network’, Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, pp. 16–20

  21. Kolakowski BM, D'Agostino PA, Chenier C, Mester Z (2007) Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Anal Chem 79(21):8257–8265. https://doi.org/10.1021/ac070816j

  22. Benedetti S, Sinelli N, Buratti S, Riva M (2005) Shelf life of Crescenza cheese as measured by electronic nose. J Dairy Sci 88(9):3044–3051. https://doi.org/10.3168/jds.S0022-0302(05)72985-4

    Article  CAS  PubMed  Google Scholar 

  23. Labreche, S., Bazzo S., Cade S., Chanie E. (2005) ‘Shelf life determination by electronic nose: application to milk’, Sensors Actuators B Chem, 106(1 SPEC. ISS.), pp. 199–206. https://doi.org/10.1016/j.snb.2004.06.027

  24. Schaller E, Bosset JO, Escher F (1998) “Electronic noses” and their application to food. Lebensm-Wiss Technol 31(4):305–316. https://doi.org/10.1006/fstl.1998.0376

  25. Lamagna A, Reich S, Rodríguez D, Boselli A, Cicerone D (2008) The use of an electronic nose to characterize emissions from a highly polluted river. Sensors Actuators B Chem 131(1):121–124. https://doi.org/10.1016/j.snb.2007.12.026

    Article  CAS  Google Scholar 

  26. Phillips, M., Cataneo R. N., Cummin A. R.C., Gagliardi A. J., Gleeson K., Greenberg J., Maxfield R. A., Rom W. N. (2003) ‘Detection of lung cancer with volatile markers in the breath.’, Chest United States, 123(6), pp. 2115–2123

  27. Schmidt, R. and Cain, W. S. (2010) ‘Making scents: dynamic olfactometry for threshold measurement.’, Chem Senses Oxford University Press, 35(2), pp. 109–120. https://doi.org/10.1093/chemse/bjp088

  28. Sommer, J. U., Maboshe W., Griebe M., Heiser C., Hörmann K., Stuck B. A., Hummel T. (2012) ‘A mobile olfactometer for fMRI-studies’, J Neurosci Methods Elsevier B.V., 209(1), pp. 189–194. https://doi.org/10.1016/j.jneumeth.2012.05.026

  29. Lundström JN, Gordon AR, Alden EC, Boesveldt S, Albrecht J (2010) Methods for building an inexpensive computer-controlled olfactometer for temporally-precise experiments. Int J Psychophysiol 78(2):179–189. https://doi.org/10.1016/j.ijpsycho.2010.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  30. Auffarth, B. (2013) ‘Understanding smell — the olfactory stimulus problem’, Neurosci Biobehav Rev. Elsevier Ltd, 37(8), pp. 1667–1679. https://doi.org/10.1016/j.neubiorev.2013.06.009

  31. Thomas-Danguin T, Sinding C, Romagny Sé, el Mountassir F, Atanasova B, le Berre E, le Bon AM, Coureaud Gé (2014) The perception of odor objects in everyday life: a review on the processing of odor mixtures. Front Psychol 5(June):1–18. https://doi.org/10.3389/fpsyg.2014.00504

  32. Guichard E (2017) Flavour : from food to perception. John Wiley & Sons Inc., Chichester, West Sussex Hoboken

    Google Scholar 

  33. Laing DG, Glemarec A (1992) Selective attention and the perceptual analysis of odor mixtures. Physiol Behav 52(6):1047–1053. https://doi.org/10.1016/0031-9384(92)90458-E

    Article  CAS  PubMed  Google Scholar 

  34. Livermore A, Laing DG (1998) The influence of chemical complexity on the perception of multicomponent odor mixtures. Percept Psychophys 60(4):650–661. https://doi.org/10.3758/BF03206052

    Article  CAS  PubMed  Google Scholar 

  35. Eiceman GA, Karpas Z, Hill HH (2013) Ion mobility spectrometry., 3rd edn. CRC Press

  36. Sammon JW (1969) Nonlinear mapping structure analysis. IEEE Trans Comput C-18(5):401–409

    Article  Google Scholar 

Download references

Acknowledgements

We wish to gratefully acknowledge the Academy of Finland for funding our project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Nieminen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieminen, V., Karjalainen, M., Salminen, K. et al. A compact olfactometer for IMS measurements and testing human perception. Int. J. Ion Mobil. Spec. 21, 71–80 (2018). https://doi.org/10.1007/s12127-018-0235-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-018-0235-1

Keywords

Navigation