Skip to main content
Log in

Locating Event-Based Causal Effects: A Configural Perspective

  • Published:
Integrative Psychological and Behavioral Science Aims and scope Submit manuscript

Abstract

Statistical models for the analysis of hypotheses that are compatible with direction dependence were originally specified based on the linear model. In these models, relations among variables reflected directional or causal hypotheses. In a number of causal theories, however, effects are defined as resulting from causes that did versus did not occur. To accommodate this type of theory, the present article proposes analyzing directional or causal hypotheses at the level of configurations. Causes thus have the effect that, in a particular sector of the data space, the density of cases increases or decreases. With reference to log-linear models of direction dependence, this article specifies base models for the configural analysis of directional or causal hypotheses. In contrast to standard configural analysis, the models are applied in a confirmatory context. Specific direction dependence hypotheses are analyzed. In a simulation study, it is shown that the proposed methods have good power to identify the sectors in the data space in which density exceeds or falls below expectation. In a data example, it is shown that the evolutionary hypothesis that body size determines brain size is confirmed in particular for higher vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. When the random mechanism that generates data can be described by a Poisson distribution, the corresponding sampling procedure is called Poisson sampling. This procedure is often used when modeling events that occur randomly over a fixed period of time. The number of events is not fixed a priori. In multinomial sampling, data are collected on a pre-determined number of cases. Each case can be assigned to any cell of a table. In product-multinomial sampling, marginal frequencies are fixed a priori, e.g., when 500 smokers are compared with 500 non-smokers.

References

  • Agresti, A. (2013). Categorical data analysis (3rd ed.). New York: Wiley.

    Google Scholar 

  • Bateson, P. (2015). Ethology and human development. In W. F. Overton & P. C. M. Molenaar (Eds.), Handbook of child psychology and developmental science (pp. 208–243). Wiley: Hoboken.

    Google Scholar 

  • Beebee, H., Hitchcock, C., & Menzies, P. (Eds.). (2009). The Oxford handbook of causation. New York: Oxford University Press.

    Google Scholar 

  • Bergman, L. R., & Magnusson, D. (1997). A person-oriented approach in research on developmental psychopathology. Development and Psychopathology, 9, 291–319.

    Article  PubMed  Google Scholar 

  • Bergman, L. R., & Trost, K. (2006). The person-oriented versus the variable-oriented approach: Are they complementary, opposites, or exploring different worlds? Merrill-Palmer Quarterly, 52, 601–632.

    Article  Google Scholar 

  • Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31, 144–152.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Crile, G., & Quiring, D. P. (1940). A record of the body weight and certain organ and gland weights of 3690 animals. Ohio Journal of Science, 40, 219–259.

    Google Scholar 

  • Darlington, R. B., & Hayes, A. F. (2000). Combining independent p-values: Extensions of the Stouffer and binomial methods. Psychological Methods, 5, 496–515.

  • Dodge, Y., & Rousson, V. (2000). Direction dependence in a regression line. Communications in Statistics: Theory and Methods, 32, 2053–2057.

    Google Scholar 

  • Dodge, Y., & Rousson, V. (2001). On asymmetric properties of the correlation coefficient in the regression setting. The American Statistician, 55, 51–54.

    Article  Google Scholar 

  • Dodge, Y., & Rousson, V. (2016). Statistical inference for direction of dependence in linear models. In W. Wiedermann & A. von Eye (Eds.), Statistics and causality: Methods for applied empirical research (pp. 45–62). Wiley: Hoboken.

    Google Scholar 

  • Dunbar, R. I. M., & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society B, 372, 20160244.

    Article  Google Scholar 

  • Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Goodman, L. A. (1973). Causal analysis of data from panel studies and other kinds of surveys. American Journal of Sociology, 78, 1135–1191.

    Article  Google Scholar 

  • Hagenaars, J. A. (1998). Categorical causal modeling: Latent class analysis and directed log-linear models with latent variables. Sociological Methods & Research, 26, 436–486.

    Article  Google Scholar 

  • Hall, E. J., & Paul, L. A. (2013). Causation: A user’s guide. Oxford: Oxford University Press.

    Google Scholar 

  • Hausman, D. M. (1999). The mathematical theory of causation. British Journal of Philosophical Science, 50, 151–162.

    Article  Google Scholar 

  • Jerison, H. (1973). Evolution of the brain and intelligence. New York: Academic Press.

    Google Scholar 

  • Kendall, M. G., & Stuart, A. (1961). The advanced theory of statistics (vol. 2): Inference and relationship. New York: Hafner.

    Google Scholar 

  • Krauth, J. (2003). Type structures in CFA. Psychology Science, 45, 330–338.

    Google Scholar 

  • Langeheine, R. (1986). Log-lineare modelle. In J. van Koolwijk & M. Wieken-Mayser (Eds.), Techniken der empirischen Sozialforschung (methods of empirical social science research) (pp. 122–195). Oldenbourg Verlag: Munich.

    Google Scholar 

  • Lienert, G. A., & Krauth, J. (1975). Configural frequency analysis as a statistical tool for defining types. Educational and Psychological Measurement, 35, 231–238.

    Article  Google Scholar 

  • MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19–40.

    Article  PubMed  Google Scholar 

  • Mair, P., & von Eye, A. (2007). Application scenarios for nonstandard log-linear models. Psychological Methods, 12, 139–156.

    Article  PubMed  Google Scholar 

  • Muddapur, M. V. (2003). On directional dependence in a regression line. Communications in Statistics: Theory and Methods, 32, 2053–2057.

    Article  Google Scholar 

  • Nelder, J. A. (1974). Log linear models for contingency tables: A generalization of classical least squares. Journal of the Royal Statistical Society C, 23, 323–329.

    Google Scholar 

  • Nelsen, R. B. (2006). An introduction to copulas (2nd ed.). New York: Springer.

    Google Scholar 

  • Paul, L.A. (2009). Counterfactual theories. In H. Beebee, C. Hitchcock, & P. Menzies (eds.) (2009). The Oxford handbook of causation (pp. 158–184). New York: Oxford University Press.

  • Pearson, K. (1900). On the correlation of characters not quantitatively measurable. Royal Society Philosophical Transactions, Series A, 195, 1–47.

    Article  Google Scholar 

  • R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 10 March 2018.

  • Rindskopf, D. (1990). Nonstandard log-linear models. Psychological Bulletin, 108(1), 150-162. https://doi.org/10.1037/0033-2909.108.1.150 .

  • Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star, S.A., & Williams, R.M. Jr. (1949). The American soldier, Vol. 1: Adjustment during Army Life. Princeton: Princeton University Press.

  • Sungur, E. A. (2005). A note on directional dependence in regression setting. Communications in Statistics: Theory and Methods, 34, 1957–1965.

    Article  Google Scholar 

  • Upton, G. J. G. (1978). The analysis of cross-tabulated data. Chichester: Wiley.

    Google Scholar 

  • von Eye, A. (2002). The odds favor antitypes - a comparison of tests for the identification of configural types and antitypes. Methods of Psychological Research - online, 7, 1–29.

    Google Scholar 

  • von Eye, A. (2004). Base models for configural frequency analysis. Psychology Science, 46, 150–170.

    Google Scholar 

  • von Eye, A., & Bergman, L. R. (2003). Research strategies in developmental psychopathology: Dimensional identity and the person-oriented approach. Development and Psychopathology, 15, 553–580.

    Google Scholar 

  • von Eye, A., & Brandtstädter, J. (1997). Configural frequency analysis as a searching device for possible causal relationships. Methods of Psychological Research - Online, 2(2), 1–23.

    Google Scholar 

  • von Eye, A., & DeShon, R.P. (2008). Characteristics of measures of directional dependence - A Monte Carlo study. http://interstat.statjournals.net/YEAR/2008/articles/0802002.pdf. Accessed 10 March 2018.

  • von Eye, A., & DeShon, R.P. (2012). Directional dependency in developmental research. International Journal of Behavior Development, 36, 303–312.

  • von Eye, A., & Gutiérrez Peña, E. (2004). Configural frequency analysis - the search for extreme cells. Journal of Applied Statistics, 31, 981–997.

    Article  Google Scholar 

  • von Eye, A., & Mun, E.-Y. (2007). A note on the analysis of difference patterns - structural zeros by design. Psychology Science, 49, 14–25.

    Google Scholar 

  • von Eye, A., & Mun, E.-Y. (2013). Log-linear modeling - concepts, interpretation and applications. New York: Wiley.

    Google Scholar 

  • von Eye, A., & Schuster, C. (1998). On the specification of models for Configural frequency analysis - sampling schemes in prediction CFA. Methods of Psychological Research - online, 3, 55–73.

    Article  Google Scholar 

  • von Eye, A., & Wiedermann, W. (2016). Direction of effects in categorical variables: A structural perspective. In W. Wiedermann & A. von Eye (Eds.), Statistics and causality: Methods for applied empirical research (pp. 107–130). Wiley: Hoboken.

    Google Scholar 

  • von Eye A.., & Wiedermann, W. (2017). Testing event-based forms of causality. Integrative Psychological & Behavioral Science (in press).

  • von Eye, A., Mair, P., & Mun, E.-Y. (2010). Advances in Configural frequency analysis. New York: Guilford Press.

    Google Scholar 

  • von Eye, A., Wiedermann, W., & Mun, E.-Y. (2013). Granger causality - statistical analysis under a configural perspective. Integrative Psychological & Behavioral Science, 48, 79–99.

    Google Scholar 

  • von Eye, A., Bergman, L. R., & Hsieh, C.-A. (2015). Person-oriented methodological approaches. In W. F. Overton & P. C. M. Molenaar (Eds.), Handbook of child psychology and developmental science - theory and methods (pp. 789–841). New York: Wiley.

    Google Scholar 

  • von Weber, S., Lautsch, E., & von Eye, A. (2003). On the limits of Configural frequency analysis: Analyzing small tables. Psychology Science, 45, 339–354.

    Google Scholar 

  • von Weber, S., von Eye, A., & Lautsch, E. (2005). Combinatoric search for types and antitypes. Psychology Science, 47, 401–423.

    Google Scholar 

  • Wiedermann, W., & Hagmann, M. (2016). Asymmetric properties of the Pearson correlation coefficient: Correlation as the negative association between linear regression residuals. Communications in Statistics-Theory and Methods, 45, 6263–6283.

    Article  Google Scholar 

  • Wiedermann, W., & von Eye, A. (2015a). Direction of effects in multiple linear regression models. Multivariate Behavioral Research, 50, 23–40.

    Article  PubMed  Google Scholar 

  • Wiedermann, W., & von Eye, A. (2015b). Direction of effects in mediation analysis. Psychological Methods, 20, 221–244.

    Article  PubMed  Google Scholar 

  • Wiedermann, W., & von Eye, A. (2015c). Direction dependence analysis: A confirmatory approach for testing directional theories. International Journal of Behavior Development, 39, 570–580.

    Article  Google Scholar 

  • Wiedermann, W., & von Eye, A. (2016). Directionality of effects in causal mediation analysis. In W. Wiedermann & A. von Eye (Eds.), Statistics and causality: Methods for applied empirical research (pp. 63–106). Wiley: Hoboken.

    Chapter  Google Scholar 

  • Wiedermann, W., & von Eye (2017). Log-linear models to evaluate direction of effect in binary variables. Statistical Papers (in press).

  • Wiedermann, W., Hagmann, M., & von Eye, A. (2015). Significance tests to determine the direction of effects in linear regression models. British Journal of Mathematical and Statistical Psychology, 68, 116–141.

    Article  PubMed  Google Scholar 

  • Wiedermann, W., Artner, R., & von Eye, A. (2017). Heteroscedasticity as a basis for direction dependence in reversible linear regression models. Multivariate Behavioral Research, 52, 222–241.

    Article  PubMed  Google Scholar 

  • Wiedermann, W., Merkle, E. C., & von Eye, A. (2018). Direction of dependence in measurement error models. British Journal of Mathematical and Statistical Psychology, 71, 117–145.

    Article  PubMed  Google Scholar 

  • Weisberg, S. (1985). Applied Linear Regression, 2nd Ed. New York: J. Wiley & Sons.

  • Wilde, M., & Williamson, J. (2016). Evidence and epistemic causality. In W. Wiedermann & A. von Eye (Eds.), Statistics and causality. Methods for applied empirical research (pp. 31–41). Wiley: Hoboken.

    Chapter  Google Scholar 

  • Wu, C. F. J., & Hamada, M. (2000). Experiments: Planning, analysis, and parameter design optimization. New York: Wiley.

    Google Scholar 

  • Yamaguchi, K. (2016). Log-linear causal analysis of cross-classified categorical data. In W. Wiedermann & A. Von Eye (Eds.), Statistics and causality: Methods for applied empirical research (pp. 311–331). Wiley: Hoboken.

    Chapter  Google Scholar 

  • Yan, J. (2007). Enjoy the joy of copulas: With a package copula. Journal of Statistical Software, 21(4), 1–21. http://www.jstatsoft.org/v21/i04/ . Accessed 10 March 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander von Eye.

Ethics declarations

Conflict of Interest

All authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Eye, A., Wiedermann, W. Locating Event-Based Causal Effects: A Configural Perspective. Integr. psych. behav. 52, 307–330 (2018). https://doi.org/10.1007/s12124-018-9423-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12124-018-9423-0

Keywords

Navigation