Skip to main content
Log in

Partial solid-state NMR 1H, 13C, 15N resonance assignments of a perdeuterated back-exchanged seven-transmembrane helical protein Anabaena Sensory Rhodopsin

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Anabaena Sensory Rhodopsin (ASR) is a unique photochromic membrane-embedded photosensor which interacts with soluble transducer and is likely involved in a light-dependent gene regulation in the cyanobacterium Anabaena sp. PCC 7120. We report partial spectroscopic 1H, 13C and 15N assignments of perdeuterated and back-exchanged ASR reconstituted in lipids. The reported assignments are in general agreement with previously determined assignments of carbon and nitrogen resonances in fully protonated samples. Because the back-exchange was performed on ASR in a detergent-solubilized state, the location of detected residues reports on the solvent accessibility of ASR in detergent. A comparison with the results of previously published hydrogen/exchange data collected on the ASR reconstituted in lipids, suggests that the protein has larger solvent accessible surface in the detergent-solubilized state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asami S, Reif B (2012) Assignment strategies for aliphatic protons in the solid-state in randomly protonated proteins. J Biomol NMR 52:31–39

    Article  Google Scholar 

  • Barbet-Massin E et al (2013) Out-and-back C-C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. J Biomol NMR 56:379–386

    Article  Google Scholar 

  • Barbet-Massin E et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497

    Article  Google Scholar 

  • Colombo MG, Meier BH, Ernst RR (1988) Rotor-driven spin diffusion in natural-abundance C-13 spin systems. Chem Phys Lett 146:189–196

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Good D, Pham C, Jagas J, Lewandowski JR, Ladizhansky V (2017) Solid-state NMR provides evidence for small-amplitude slow domain motions in a multispanning transmembrane alpha-helical protein. J Am Chem Soc 139:9246–9258

    Article  Google Scholar 

  • Hansen PE (1988) Isotope effects in nuclear shielding. Prog Nucl Magn Reson Spectrosc 20:207–255

    Article  Google Scholar 

  • Hansen PE (2000) Isotope effects on chemical shifts of proteins and peptides. Magn Reson Chem 38:1–10

    Article  Google Scholar 

  • Jung KH (2007) The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya. Photochem Photobiol 83:63–69

    Article  Google Scholar 

  • Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522

    Article  Google Scholar 

  • Kawanabe A, Furutani Y, Yoon SR, Jung KH, Kandori H (2008) FTIR study of the L intermediate of Anabaena Sensory Rhodopsin: structural changes in the cytoplasmic region. Biochemistry 47:10033–10040

    Article  Google Scholar 

  • Keller R (2004) The computer aided resonance assignment tutorial, 1st edn. CANTINA Verlag, Goldau

    Google Scholar 

  • Kondoh M, Inoue K, Sasaki J, Spudich JL, Terazima M (2011) Transient dissociation of the transducer protein from Anabaena Sensory Rhodopsin concomitant with formation of the M state produced upon photoactivation. J Am Chem Soc 133:13406–13412

    Article  Google Scholar 

  • Linser R et al (2011) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed Engl 50:4508–4512

    Article  Google Scholar 

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Ottiger M, Bax A (1997) An empirical correlation between amide deuterium isotope effects on C-13(alpha) chemical shifts and protein backbone conformation. J Am Chem Soc 119:8070–8075

    Article  Google Scholar 

  • Raleigh DP, Levitt MH, Griffin RG (1988) Rotational Resonance in Solid-State NMR. Chem Phys Lett 146:71–76

    Article  ADS  Google Scholar 

  • Shi L, Yoon SR, Bezerra AG Jr, Jung KH, Brown LS (2006) Cytoplasmic shuttling of protons in Anabaena Sensory Rhodopsin: implications for signaling mechanism. J Mol Biol 358:686–700

    Article  Google Scholar 

  • Shi L, Kawamura I, Jung KH, Brown LS, Ladizhansky V (2011) Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew Chem Int Ed Engl 50:1302–1305

    Article  Google Scholar 

  • Smith AA, Ravotti F, Testori E, Cadalbert R, Ernst M, Bockmann A, Meier BH (2017) Partially-deuterated samples of HET-s(218-289) fibrils: assignment and deuterium isotope effect. J Biomol NMR 67:109–119

    Article  Google Scholar 

  • Venters RA, Farmer BT 2nd, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264:1101–1116

    Article  Google Scholar 

  • Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H (2004) Anabaena Sensory Rhodopsin: a photochromic color sensor at 2.0 A. Science 306:1390–1393

    Article  ADS  Google Scholar 

  • Wang S, Kim SY, Jung KH, Ladizhansky V, Brown LS (2011a) A eukaryotic-like interaction of soluble cyanobacterial sensory rhodopsin transducer with DNA. J Mol Biol 411:449–462

    Article  Google Scholar 

  • Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V (2011b) Site-specific solid-state NMR detection of hydrogen-deuterium exchange reveals conformational changes in a 7-helical transmembrane protein. Biophys J 101:L23-25

    Article  Google Scholar 

  • Wang S, Munro RA, Kim SY, Jung KH, Brown LS, Ladizhansky V (2012) Paramagnetic relaxation enhancement reveals oligomerization interface of a membrane protein. J Am Chem Soc 134:16995–16998

    Article  Google Scholar 

  • Wang S et al (2013a) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012

    Article  Google Scholar 

  • Wang S, Shi L, Okitsu T, Wada A, Brown LS, Ladizhansky V (2013b) Solid-state NMR (13)C and (15)N resonance assignments of a seven-transmembrane helical protein Anabaena Sensory Rhodopsin. Biomol NMR Assign 7:253–256

    Article  Google Scholar 

  • Wang S et al (2016) Structure and dynamics of extracellular loops in human Aquaporin-1 from solid-state NMR and molecular dynamics. J Phys Chem B 120:9887–9902

    Article  Google Scholar 

  • Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133:17434–17443

    Article  Google Scholar 

  • Ward ME, Wang S, Krishnamurthy S, Hutchins H, Fey M, Brown LS, Ladizhansky V (2014) High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. J Biomol NMR 58:37–47

    Article  Google Scholar 

  • Ward ME et al (2015) In situ structural studies of Anabaena Sensory Rhodopsin in the E. coli membrane. Biophys J 108:1683–1696

    Article  Google Scholar 

  • Wylie BJ, Sperling LJ, Rienstra CM (2008) Isotropic chemical shifts in magic-angle spinning NMR spectra of proteins. Phys Chem Chem Phys 10:405–413

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSERC Discovery Grants to L.S.B. (RGPIN-2013-250202) and V.L. (RGPIN-2014-04547), Canada Foundation of Innovation, and Ontario Ministry of Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ladizhansky.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Accession numbers: Chemical shifts for assigned residues have been deposited to BioMagResBank (http://www.bmrb.wisc.edu) under BMRB entry 27312

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4218 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolton, D., Brown, L.S. & Ladizhansky, V. Partial solid-state NMR 1H, 13C, 15N resonance assignments of a perdeuterated back-exchanged seven-transmembrane helical protein Anabaena Sensory Rhodopsin. Biomol NMR Assign 12, 237–242 (2018). https://doi.org/10.1007/s12104-018-9815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-018-9815-6

Keywords

Navigation