Computing the 2-adic complexity of two classes of Ding-Helleseth generalized cyclotomic sequences of periods of twin prime products

Abstract

This paper contributes to compute the 2-adic complexity of two classes of Ding-Helleseth generalized cyclotomic sequences. Results show that the 2-adic complexity of these sequences is good enough to resist the attack by the rational approximation algorithm.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, Amsterdam (1998)

    Google Scholar 

  2. 2.

    Klapper, A., Goresky, M.: Cryptanalysis based on 2-adic rational approximation. Advances in Cryptology-crypoto95 963, 262–274 (1995)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol. 10, 111–147 (1997)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Tian, T., Qi, W.: 2-Adic complexity of binary m-sequences. IEEE Trans. Inform. Theory 56, 450–454 (2010)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Hu, H.: Comments on “A new method to compute the 2-adic complexity of binary sequences”. IEEE Trans. Inform. Theory 60, 5803–5804 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Xiong, H., Qu, L., Li, C.: A new method to compute the 2-adic complexity of binary sequences. IEEE Trans. Inform. Theory 60, 2399–2406 (2014)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Xiong, H., Qu, L., Li, C.: 2-Adic complexity of binary sequences with interleaved structure. Finite Fields and Their Appl. 33, 14–28 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Hofer, R., Winterhof, A.: On the 2-adic complexity of the two-prime generator. IEEE Trans. Inform. Theory, pp 1–1 (2018)

  9. 9.

    Sun, Y., Wang, Q., Yan, T.: A lower bound on the 2-adic complexity of the modified Jacobi sequence. Cryptogr. Commun. 11, 337–349 (2019)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Sun, Y., Wang, Q., Yan, T.: The exact autocorrelation distribution and 2-adic complexity of a class of binary sequences with almost optimal autocorrelation. Cryptogr. Commun. 10, 467–477 (2018)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Edemskiy, V., Sokolovskiy, N.: Notes about the linear complexity of Ding-Helleseth generalized cyclotomic sequences of length pq over the finite field of order p or q. ITM Web of Conferences 9, 01005 (2017)

    Article  Google Scholar 

  12. 12.

    Wang, Q., Lin, D.: Generalized cyclotomic numbers of order two and their applications. Cryptogr. Commun. 8, 605–616 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley, New York (1998)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tongjiang Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is financially supported by Fundamental Research Funds for the Central Universities (No. ZD2019-183-008), the Major Scientific and Technological Projects of CNPC under Grant ZD2019-18 (No. ZD2019-183-001), National Natural Science Foundation of China (No. 61902429).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TXT 1.32 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Yan, T. & Li, Y. Computing the 2-adic complexity of two classes of Ding-Helleseth generalized cyclotomic sequences of periods of twin prime products. Cryptogr. Commun. 13, 15–26 (2021). https://doi.org/10.1007/s12095-020-00451-1

Download citation

Keywords

  • Pseudo-random sequences
  • Generalized cyclotomic sequences
  • 2-adic complexity

Mathematics Subject Classification (2010)

  • 94A55
  • 94A60