On self-dual and LCD double circulant and double negacirculant codes over \(\mathbb {F}_{q}+u\mathbb {F}_{q}\)


Double circulant codes of length 2n over the non-local ring \(R=\mathbb {F}_{q}+u\mathbb {F}_{q}, u^{2}=u,\) are studied when q is an odd prime power, and − 1 is a square in \(\mathbb {F}_{q}\). Double negacirculant codes of length 2n are studied over R when n is even, and q is an odd prime power. Exact enumeration of self-dual and LCD such codes for given length 2n is given. Employing a duality-preserving Gray map, self-dual and LCD codes of length 4n over \(\mathbb {F}_{q}\) are constructed. Using random coding and the Artin conjecture, the relative distance of these codes is bounded below for n. The parameters of examples of modest lengths are computed. Several such codes are optimal.

This is a preview of subscription content, log in to check access.


  1. 1.

    Alahmadi, A., Güneri, C., Özkaya, B., Shoaib, H., Solé, P.: On self-dual double negacirculant codes. Discret. Appl. Math. 222, 205–212 (2017)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Alahmadi, A., Güneri, C., Özkaya, B., Shoaib, H., Solé, P.: On linear complementary-dual multinegacirculant codes. arXiv:1703.03115v1 [cs.IT] (2017)

  3. 3.

    Alahmadi, A., Ozdemir, F., Solé, P.: On self-dual double circulant codes. Designs Codes & Cryptography. https://doi.org/10.1007/s10623-017-0393-x (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Dougherty, S.T., Gaborit, P., Harada, M., Munemasa, A., Solé, P.: Type IV codes over rings. IEEE Trans. Inf. Theory 45(7), 2345–2360 (1999)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Dougherty, S.T., Kim, J.L., Özkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: Linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2/3), 116–128 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de

  7. 7.

    Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Their Appl. 42, 67–80 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Hooley, C.: On Artin’s conjecture. J. Reine Angew. Math 225, 209–220 (1967)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Huffman, W.C., Pless, V: Fundamentals of Error Correcting Codes. Cambridge University Press (2003)

  10. 10.

    Jia, Y.: On quasi-twisted codes over finite fields. Finite Fields Appl. 18, 237–257 (2012)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983)

    Google Scholar 

  12. 12.

    Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: Finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2760 (2001)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes II: Chain rings. Des. Codes Cryptogr. 30(1), 113–130 (2003)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Liu, Y., Shi, M.J., Solé, P.: Construction of hermitian self-dual constacyclic codes over \(\mathbb {F}_{q^{2}}+v\mathbb {F}_{q^{2}}\). Appl. Comput. Math. 15(3), 359–369 (2016)

    MathSciNet  Google Scholar 

  15. 15.

    Meyn, H.: Factorization of the cyclotomic polynomial \(x^{2^{n}}+ 1\) over finite fields. Finite Fields Appl. 2, 439–442 (1996)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Moree, P.: Artin’s primitive root conjecture a survey. Integers 10(6), 1305–1416 (2012)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Magma website http://magma.maths.usyd.edu.au/magma/

  18. 18.

    Shi, M.J., Zhu, H.W., Solé, P.: On the self-dual four-circulant codes. Int. J. Found. Comput. Sci. 29(7), 1143–1150 (2018)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Shi, M.J., Guan, Y., Solé, P.: Two new families of two-weight codes. IEEE Trans. Inf. Theory 63(10), 6240–6246 (2017)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Zhu, S.X., Wang, L.: A class of constacyclic codes over \(\mathbb {F},_{p}+v\mathbb {F}_{p}\). Discret. Math. 311, 2677–2682 (2011)

    Article  Google Scholar 

Download references


This research is supported by National Natural Science Foundation of China (61672036) and Excellent Youth Foundation of Natural Science Foundation of Anhui Province (1808085J20).

Author information



Corresponding author

Correspondence to Minjia Shi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Zhu, H., Qian, L. et al. On self-dual and LCD double circulant and double negacirculant codes over \(\mathbb {F}_{q}+u\mathbb {F}_{q}\). Cryptogr. Commun. 12, 53–70 (2020). https://doi.org/10.1007/s12095-019-00363-9

Download citation


  • Double circulant codes
  • Double negacirculant codes
  • Codes over rings
  • Self-dual codes
  • LCD codes
  • Artin conjecture

Mathematics Subject Classification (2010)

  • 94 B15
  • 94 B25
  • 05 E30