Optimal bounds on codes for location in circulant graphs



Identifying and locating-dominating codes have been studied widely in circulant graphs of type \(C_{n}(1,2,3,\dots , r)\) over the recent years. In 2013, Ghebleh and Niepel studied locating-dominating and identifying codes in the circulant graphs \(C_{n}(1,d)\) for \(d = 3\) and proposed as an open question the case of \(d > 3\). In this paper we study identifying, locating-dominating and self-identifying codes in the graphs \(C_{n}(1,d)\), \(C_{n}(1,d-1,d)\) and \(C_{n}(1,d-1,d,d + 1)\). We give a new method to study lower bounds for these three codes in the circulant graphs using suitable grids. Moreover, we show that these bounds are attained for infinitely many parameters n and d. In addition, new approaches are provided which give the exact values for the optimal self-identifying codes in \(C_{n}(1,3)\) and \(C_{n}(1,4)\).


Identifying code Locating-dominating code Circulant graph Square grid Triangular grid King grid 

Mathematics Subject Classification (2010)

94B25 94B65 05C69 05B40 



We would like to thank the referees for their suggestions which improved the presentation of the paper.


  1. 1.
    Ben-Haim, Y., Litsyn, S.: Exact minimum density of codes identifying vertices in the square grid. SIAM J. Discret. Math. 19(1), 69–82 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bertrand, N., Charon, I., Hudry, O., Lobstein, A.: Identifying and locating-dominating codes on chains and cycles. Eur. J. Comb. 25(7), 969–987 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Charon, I., Hudry, O., Lobstein, A.: Identifying codes with small radius in some infinite regular graphs. Electron. J. Combin. 9(1), Research Paper 11 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Chen, C., Lu, C., Miao, Z.: Identifying codes and locating-dominating sets on paths and cycles. Discret. Appl. Math. 159(15), 1540–1547 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cohen, G., Gravier, S., Honkala, I., Lobstein, A., Mollard, M., Payan, C., Zémor, G.: Improved identifying codes for the grid. Electron. J. Combin. 6, Research Paper 19, Comment (1999)MathSciNetGoogle Scholar
  6. 6.
    Cohen, G., Honkala, I., Lobstein, A., Zémor, G.: On codes identifying vertices in the two-dimensional square lattice with diagonals. IEEE Trans. Comput. 50 (2), 174–176 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Exoo, G., Junnila, V., Laihonen, T.: Locating-dominating codes in cycles. Australas. J. Combin. 49, 177–194 (2011)MathSciNetMATHGoogle Scholar
  8. 8.
    Ghebleh, M., Niepel, L.: Locating and identifying codes in circulant networks. Discret. Appl. Math. 161(13-14), 2001–2007 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gravier, S., Moncel, J., Semri, A.: Identifying codes of cycles. Eur. J. Comb. 27(5), 767–776 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Honkala, I.: An optimal locating-dominating set in the infinite triangular grid. Discret. Math. 306(21), 2670–2681 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Honkala, I., Laihonen, T.: On locating-dominating sets in infinite grids. Eur. J. Comb. 27(2), 218–227 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Honkala, I., Laihonen, T.: On a new class of identifying codes in graphs. Inform. Process. Lett. 102(2-3), 92–98 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Junnila, V., Laihonen, T.: Optimal identifying codes in cycles and paths. Graphs Combin. 28(4), 469–481 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Junnila, V., Laihonen, T.: Collection of codes for tolerant location. In: Proceedings of the Bordeaux Graph Workshop, pp. 176–179 (2016)Google Scholar
  15. 15.
    Junnila, V., Laihonen, T.: Tolerant location detection in sensor networks. Submitted (2016)Google Scholar
  16. 16.
    Junnila, V., Laihonen, T., Paris, G.: Solving two conjectures regarding codes for location in circulant graphs. Submitted (2017)Google Scholar
  17. 17.
    Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory 44(2), 599–611 (1998)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Manuel, P.: Locating and liar domination of circulant networks. Ars Combin. 101, 309–320 (2011)MathSciNetMATHGoogle Scholar
  19. 19.
    Rall, D.F., Slater, P.J.: On location-domination numbers for certain classes of graphs. Congr. Numer. 45, 97–106 (1984)MathSciNetMATHGoogle Scholar
  20. 20.
    Roberts, D.L., Roberts, F.S.: Locating sensors in paths and cycles: The case of 2-identifying codes. Eur. J. Comb. 29(1), 72–82 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Slater, P.J.: Dominating and reference sets in a graph. J. Math. Phys. Sci. 22, 445–455 (1988)MathSciNetMATHGoogle Scholar
  23. 23.
    Slater, P.J.: Fault-tolerant locating-dominating sets. Discret. Math. 249(1–3), 179–189 (2002)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Xu, M., Thulasiraman, K., Hu, X.-D.: Identifying codes of cycles with odd orders. Eur. J. Comb. 29(7), 1717–1720 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  2. 2.LIRISUniversity of LyonLyonFrance

Personalised recommendations