Advertisement

Optimal bounds on codes for location in circulant graphs

  • Ville Junnila
  • Tero Laihonen
  • Gabrielle Paris
Article

Abstract

Identifying and locating-dominating codes have been studied widely in circulant graphs of type \(C_{n}(1,2,3,\dots , r)\) over the recent years. In 2013, Ghebleh and Niepel studied locating-dominating and identifying codes in the circulant graphs \(C_{n}(1,d)\) for \(d = 3\) and proposed as an open question the case of \(d > 3\). In this paper we study identifying, locating-dominating and self-identifying codes in the graphs \(C_{n}(1,d)\), \(C_{n}(1,d-1,d)\) and \(C_{n}(1,d-1,d,d + 1)\). We give a new method to study lower bounds for these three codes in the circulant graphs using suitable grids. Moreover, we show that these bounds are attained for infinitely many parameters n and d. In addition, new approaches are provided which give the exact values for the optimal self-identifying codes in \(C_{n}(1,3)\) and \(C_{n}(1,4)\).

Keywords

Identifying code Locating-dominating code Circulant graph Square grid Triangular grid King grid 

Mathematics Subject Classification (2010)

94B25 94B65 05C69 05B40 

Notes

Acknowledgements

We would like to thank the referees for their suggestions which improved the presentation of the paper.

References

  1. 1.
    Ben-Haim, Y., Litsyn, S.: Exact minimum density of codes identifying vertices in the square grid. SIAM J. Discret. Math. 19(1), 69–82 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertrand, N., Charon, I., Hudry, O., Lobstein, A.: Identifying and locating-dominating codes on chains and cycles. Eur. J. Comb. 25(7), 969–987 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Charon, I., Hudry, O., Lobstein, A.: Identifying codes with small radius in some infinite regular graphs. Electron. J. Combin. 9(1), Research Paper 11 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, C., Lu, C., Miao, Z.: Identifying codes and locating-dominating sets on paths and cycles. Discret. Appl. Math. 159(15), 1540–1547 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cohen, G., Gravier, S., Honkala, I., Lobstein, A., Mollard, M., Payan, C., Zémor, G.: Improved identifying codes for the grid. Electron. J. Combin. 6, Research Paper 19, Comment (1999)MathSciNetGoogle Scholar
  6. 6.
    Cohen, G., Honkala, I., Lobstein, A., Zémor, G.: On codes identifying vertices in the two-dimensional square lattice with diagonals. IEEE Trans. Comput. 50 (2), 174–176 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Exoo, G., Junnila, V., Laihonen, T.: Locating-dominating codes in cycles. Australas. J. Combin. 49, 177–194 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ghebleh, M., Niepel, L.: Locating and identifying codes in circulant networks. Discret. Appl. Math. 161(13-14), 2001–2007 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gravier, S., Moncel, J., Semri, A.: Identifying codes of cycles. Eur. J. Comb. 27(5), 767–776 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Honkala, I.: An optimal locating-dominating set in the infinite triangular grid. Discret. Math. 306(21), 2670–2681 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Honkala, I., Laihonen, T.: On locating-dominating sets in infinite grids. Eur. J. Comb. 27(2), 218–227 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Honkala, I., Laihonen, T.: On a new class of identifying codes in graphs. Inform. Process. Lett. 102(2-3), 92–98 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Junnila, V., Laihonen, T.: Optimal identifying codes in cycles and paths. Graphs Combin. 28(4), 469–481 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Junnila, V., Laihonen, T.: Collection of codes for tolerant location. In: Proceedings of the Bordeaux Graph Workshop, pp. 176–179 (2016)Google Scholar
  15. 15.
    Junnila, V., Laihonen, T.: Tolerant location detection in sensor networks. Submitted (2016)Google Scholar
  16. 16.
    Junnila, V., Laihonen, T., Paris, G.: Solving two conjectures regarding codes for location in circulant graphs. Submitted (2017)Google Scholar
  17. 17.
    Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory 44(2), 599–611 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Manuel, P.: Locating and liar domination of circulant networks. Ars Combin. 101, 309–320 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Rall, D.F., Slater, P.J.: On location-domination numbers for certain classes of graphs. Congr. Numer. 45, 97–106 (1984)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Roberts, D.L., Roberts, F.S.: Locating sensors in paths and cycles: The case of 2-identifying codes. Eur. J. Comb. 29(1), 72–82 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Slater, P.J.: Dominating and reference sets in a graph. J. Math. Phys. Sci. 22, 445–455 (1988)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Slater, P.J.: Fault-tolerant locating-dominating sets. Discret. Math. 249(1–3), 179–189 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Xu, M., Thulasiraman, K., Hu, X.-D.: Identifying codes of cycles with odd orders. Eur. J. Comb. 29(7), 1717–1720 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  2. 2.LIRISUniversity of LyonLyonFrance

Personalised recommendations