Advertisement

Quantum codes over F p from cyclic codes over F p [u, v]/〈u2 − 1, v3v, uvvu

  • Mohammad Ashraf
  • Ghulam Mohammad
Article
  • 94 Downloads

Abstract

In this paper, quantum codes over F p from cyclic codes over the ring F p [u, v]/〈u2 − 1, v3v, uvvu〉, where u2 = 1, v3 = v, uv = vu and p is an odd prime have been studied. We give the structure of cyclic codes over the ring F p [u, v]/〈u2 − 1, v3v, uvvu〉 and obtain quantum codes over F p using self-orthogonal property of these classes of codes. Moreover, by using decomposing method, the parameters of the associated quantum code have been determined.

Keywords

Quantum codes Cyclic codes Self-orthogonal codes Gray map 

Mathematics Subject Classification (2010)

94B05 94B15 

Notes

Acknowledgments

The authors are thankful to the anonymous referees for their careful reading of the paper and valuable comments.

References

  1. 1.
    Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53, 1183–1188 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over F 3 + v F 3. Int. J. Quantum Inf. 12(6), 1450042 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over F p + v F p. Int. J. Inf. Coding Theory 3(2), 137–144 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over F q + u F q + v F q + u v F q. Quantum Inf. Process. 15(10), 4089–4098 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Calderbank, A.R., Rains, E.M., Shor, P.M., over, N.J.A.: Sloane Quantum error-correction via codes GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over A 2. Int. J. Quantum Inf. 13(3), 1550031 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feng, K., Ling, S., Xing, C.: Asymtotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52, 986–991 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gao, J.: Some results on linear codes over F p + u F p + u 2 F p. J. App. Math. Comput. 47, 473–485 (2015)CrossRefGoogle Scholar
  9. 9.
    Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2, 55–64 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gaurdia, G., Palazzo, JrR.: Constructions of new families of nonbinary CSS codes. Discrete Math. 310, 2935–2945 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gottesman, D.: An introduction to quantum error-correction. Proc. Symp. Appl. Math. Amer. Math. Soc. 68, 13–58 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary quantum stabilizer codes over finite fields. IEEE Trans. Inform. Theory 52, 4892–4914 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over F 4 + u F 4. Int. J. Quantum Inf. 9, 689–700 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, R., Xu, Z., Li, X.: Binary construction of quantum codes of minimum distance three and four. IEEE Trans. Inf. Theory 50, 1331–1335 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, R., Xu, Z.: Construction of [[n, n − 4, 3]]q quantum codes for odd prime power q. Phys. Rev. A 82, 1–4 (2010)MathSciNetGoogle Scholar
  16. 16.
    Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7, 1277–1283 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Qian, J.: Quantum codes from cyclic codes over F 2 + v F 2. J. Inf. Compt. Sci. 10, 1715–1722 (2013)CrossRefGoogle Scholar
  18. 18.
    Sari, M., Siap, I.: On quantum codes from cyclic codes over a class of nonchain rings. Bull. Korean Math. Soc. 53(6), 1617–1628 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shi, M., Yang, S.L., Zhu, S.: Good p-ary quasi cyclic codes from cyclic codes over F p + v F p. J. Syst. Sci. Complex 25, 375–384 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493–2496 (1995)CrossRefGoogle Scholar
  21. 21.
    Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54, 4741–4751 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Applied SciencesThe NorthCap UniversityGurugramIndia

Personalised recommendations