Several new classes of linear codes with few weights



Let \(\phantom {\dot {i}\!}\mathbb {F}_{q}\) be a finite field of order q, where q = ps is a power of a prime number p. Let m and m1 be two positive integers such that m1 divides m. For any positive divisor e of q − 1, we construct an infinite family of codes with dimension m + m1 and few weights over \(\phantom {\dot {i}\!}\mathbb {F}_{q}\). Using Gauss sum, their weight distributions are provided. When gcd(e, m) = 1, we obtain a subclass of optimal codes which attain the Griesmer bound. Moreover, when gcd(e, m) = 2 or 3 we construct new infinite families of codes with at most four weights.


Linear codes Weight distribution Gauss sum 

Mathematics Subject Classification 2010

94B05 94B15 


  1. 1.
    Assmus, E.F., Mattson, H.F. Jr: Error-correcting codes: an axiomatic approach. Inf. Control. 6, 315–330 (1963)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ding, C., Li, C., Li, N., Zhou, Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339(2), 415–427 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ding, K., Ding, C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014)CrossRefGoogle Scholar
  4. 4.
    Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at
  5. 5.
    Liu, H., Maouche, Y.: Two-weight and a few weights trace codes over \({F}_{q}+ u{F}_{q} \). arXiv:1703.04968 (2017)
  6. 6.
    Lidl, R., Niederreiter, H.: Finite fields. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  7. 7.
    Ma, C., Zeng, L., Liu, Y., Feng, D., Ding, C.: The weight enumerator of a class of cyclic codes. IEEE Trans. Inf. Theory 57(1), 397–402 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Macdonald, J.E.: Design methods for maximum minimum-distance error-correcting codes. IBM J. Res. Dev. 4, 43–57 (1960)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Myerson, G.: Period polynomials and Gauss sums for finite fields. Acta Arith. 39(3), 251–264 (1981)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Shi, M., Liu, Y., Solé, P.: Optimal two-weight codes from trace codes over \(F_{2} + uF_{2}\). IEEE Commun. Lett. 20(12), 2346–2349 (2016)CrossRefGoogle Scholar
  11. 11.
    Shi, M., Wu, R.S., Liu, Y., Solé, P.: Two and three weight codes over \({F}_{p}+u{F}_{p}\). Cryptogr. Commun. 9(5), 637–646 (2016)CrossRefMATHGoogle Scholar
  12. 12.
    Yu, L., Liu, H.: The weight distribution of a family of p-ary cyclic codes. Des. Codes Crypt. 78(3), 731–745 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication July/2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCentral China Normal UniversityWuhanChina
  2. 2.Department of MathematicsUniversity of Sciences and Technology HOUARI BOUMEDIENEAlgerAlgeria

Personalised recommendations