CDKN2A inhibits cell proliferation and invasion in cervical cancer through LDHA-mediated AKT/mTOR pathway



The current study aims to explore the effects of CDKN2A on cell proliferation and cycle, and investigate the underlying mechanisms.


Expression of CDKN2A in cervical cancer cell lines was evaluated by real-time quantitative PCR (RT-qPCR) and western blotting. Apoptotic rate was detected by Annexin V assay. MTT assay, Transwell assay and cell cycle assay kit were applied to examine the effect of CDKN2A on cell viability, invasion and cell cycle. Co-immunoprecipitation and western blotting were devoted to explore the mechanism by which CDKN2A contributes to cell function.


CDKN2A was expressed at a low level in cervical cancer cell lines. Overexpression of CDKN2A inhibited cell proliferation and invasion, and caused cell cycle arrest in the G1 phase. CDKN2A mediates the AKT–mTOR signaling pathway by suppressing lactate dehydrogenase (LDHA). Taken together, our data revealed that CDKN2A can be applied as a therapeutic target for the treatment of cervical cancer in future.


CDKN2A inhibits cell proliferation and invasion in cervical cancer through LDHA-mediated AKT–mTOR pathway.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Small W Jr, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: a global health crisis. Cancer. 2017;123(13):2404–12.

    Article  Google Scholar 

  2. 2.

    Zhang J, Yao T, Wang Y, Yu J, Liu Y, Lin Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 2016;17(1):104–13.

    PubMed  Article  Google Scholar 

  3. 3.

    Choi S, Hsu I-CJ. Cervical cancer. In: Hansen EK, Roach III M, editors. Handbook of evidence-based radiation oncology. Cham, Switzerland: Springer; 2018. pp. 631–52.

    Google Scholar 

  4. 4.

    Sudhalkar N, Rathod NP, Mathews A, Chopra S, Sriram H, Shrivastava SK, et al. Potential role of cancer stem cells as biomarkers and therapeutic targets in cervical cancer. Cancer Rep. 2019;2(2):e1144.

    Article  Google Scholar 

  5. 5.

    Shrestha AD, Neupane D, Vedsted P, Kallestrup P. Cervical cancer prevalence, incidence and mortality in low and middle income countries: a systematic review. Asian Pac J Cancer Prev APJCP. 2018;19(2):319.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Jiao Y, Feng Y, Wang X. Regulation of tumor suppressor gene CDKN2A and encoded p16-INK4a protein by covalent modifications. Biochem (Mosc). 2018;83(11):1289–98.

    CAS  Article  Google Scholar 

  7. 7.

    Elvin JA, Gay LM, Ort R, Shuluk J, Long J, Shelley L, et al. Clinical benefit in response to palbociclib treatment in refractory uterine leiomyosarcomas with a common CDKN2A alteration. Oncologist. 2017;22(4):416–21.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Xia L, Zhang W, Gao L. Clinical and prognostic effects of CDKN2A, CDKN2B and CDH13 promoter methylation in ovarian cancer: a study using meta-analysis and TCGA data. Biomarkers. 2019;24(7):700–11.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Rambau PF, Vierkant RA, Intermaggio MP, Kelemen LE, Goodman MT, Herpel E, et al. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. J Pathol Clin Res. 2018;4(4):250–61.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Watkins JC, Howitt BE, Horowitz NS, Ritterhouse LL, Dong F, MacConaill LE, et al. Differentiated exophytic vulvar intraepithelial lesions are genetically distinct from keratinizing squamous cell carcinomas and contain mutations in PIK3CA. Mod Pathol. 2017;30(3):448.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature. 2001;409(6823):1067–70.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Zhao L, Zhang Z, Lou H, Liang J, Yan X, Li W, et al. Exploration of the molecular mechanisms of cervical cancer based on mRNA expression profiles and predicted microRNA interactions. Oncol Lett. 2018;15(6):8965–72.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Pathria G, Scott DA, Feng Y, Lee JS, Fujita Y, Zhang G, et al. Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. EMBO J. 2018;37(20):e99735.

    PubMed  Article  Google Scholar 

  14. 14.

    Han R, Wang F, Zhang P, Zhou X, Li Y. miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA. Neoplasma. 2017;64(2):244–52.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Guddeti RK, Bali P, Karyala P, Pakala SB. MTA1 coregulator regulates LDHA expression and function in breast cancer. Biochem Biophys Res Commun. 2019;520(1):54–9.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    An J, Zhang Y, He J, Zang Z, Zhou Z, Pei X, et al. Lactate dehydrogenase A promotes the invasion and proliferation of pituitary adenoma. Sci Rep. 2017;7(1):4734.

    PubMed  Article  Google Scholar 

  17. 17.

    Zhang R, Su J, Xue S-L, Yang H, Ju L-L, Ji Y, et al. HPV E6/p53 mediated down-regulation of miR-34a inhibits Warburg effect through targeting LDHA in cervical cancer. Am J Cancer Res. 2016;6(2):312.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bhattacharyya S, Sekar V, Majumder B, Mehrotra DG, Banerjee S, Bhowmick AK, et al. CDKN2A-p53 mediated antitumor effect of Lupeol in head and neck cancer. Cell Oncol. 2017;40(2):145–55.

    CAS  Article  Google Scholar 

  19. 19.

    Yang L, Hou Y, Yuan J, Tang S, Zhang H, Zhu Q, et al. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways. Oncotarget. 2015;6(28):25755.

    PubMed  Article  Google Scholar 

  20. 20.

    Yao F, Zhao T, Zhong C, Zhu J, Zhao H. LDHA is necessary for the tumorigenicity of esophageal squamous cell carcinoma. Tumor Biol. 2013;34(1):25–31.

    CAS  Article  Google Scholar 

  21. 21.

    LoRusso PM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol. 2016;34(31):3803.

    PubMed  Article  Google Scholar 

  22. 22.

    Lu J, Sun D, Gao S, Gao Y, Ye J, Liu P. Cyclovirobuxine D induces autophagy-associated cell death via the Akt/mTOR pathway in MCF-7 human breast cancer cells. J Pharmacol Sci. 2014;125(1):74–82.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Pal A, Potjer TP, Thomsen SK, Ng HJ, Barrett A, Scharfmann R, et al. Loss-of-function mutations in the cell-cycle control gene CDKN2A impact on glucose homeostasis in humans. Diabetes. 2016;65(2):527–33.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor suppressors RB1 and CDKN2a cooperatively regulate cell-cycle progression and differentiation during cardiomyocyte development and repair: implications for stimulating neomyogenesis with cell-based therapy. Circ Res. 2019;124(8):1184–97.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Bowe S, Butler R, Halliday D, Geremias R, Cerbon D, Huang M, et al. 240 First year experience of hereditary testing in gynecological cancer patients in a clinical setting in the bahamas. BMJ Spec J. 2019;28(11):1275–83.

    Google Scholar 

  26. 26.

    Hosseini ES, Meryet-Figuiere M, Sabzalipoor H, Kashani HH, Nikzad H, Asemi Z. Dysregulated expression of long noncoding RNAs in gynecologic cancers. Mol Cancer. 2017;16(1):107.

    PubMed  Article  Google Scholar 

  27. 27.

    Aftab A, Shahzad S, Hussain HMJ, Khan R, Irum S, Tabassum, S. CDKN2A/P16INK4A variants association with breast cancer and their in-silico analysis. Breast Cancer 2019;26(1):11–28.

    PubMed  Article  Google Scholar 

  28. 28.

    Zeng H, Jorapur A, Shain AH, Lang UE, Torres R, Zhang Y, et al. Bi-allelic loss of CDKN2A initiates melanoma invasion via BRN2 activation. Cancer Cell. 2018;34(1):56–68.e9.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Liang S, Zhang N, Deng Y, Chen L, Zhang Y, Zheng Z, et al. miR-663 promotes NPC cell proliferation by directly targeting CDKN2A. Mol Med Rep. 2017;16(4):4863–70.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Harada M, Liu T, Hu B, Wu Z, Phan S. Telomerase reverse transcriptase regulates CDKN2A and ACTA2 expression in fibroblasts. C62. Fibroblast biology. Am Thoracic Soc. 2019;71(1):A5353-A.

    Google Scholar 

  31. 31.

    Mern DS, Hasskarl J, Burwinkel B. Inhibition of Id proteins by a peptide aptamer induces cell-cycle arrest and apoptosis in ovarian cancer cells. Br J Cancer 2010;103(8):1237–44.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Zhang D, Sun G, Zhang H, Tian J, Li Y. Long non-coding RNA ANRIL indicates a poor prognosis of cervical cancer and promotes carcinogenesis via PI3K/Akt pathways. Biomed Pharmacother. 2017;85:511–6.

    CAS  Article  Google Scholar 

  33. 33.

    Song L, Liu S, Zhang L, Yao H, Gao F, Xu D, et al. MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop and the Akt-mTOR signaling pathway. Tumor Biol. 2016;37(9):12161–8.

    CAS  Article  Google Scholar 

  34. 34.

    Cheng X, Yu D, Cheng G, Yung BC, Lee RJ. T7 peptide-conjugated lipid nanoparticles for dual modulation of Bcl-2 and Akt-1 in lung and cervical carcinomas. Mol Pharm. 2018;15(10):4722–32.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Du W, Qi X, Liu G, Zhao X, Yuan J, Wen J. Effects of target regulation of LDHA through the PDK1/Akt/mTOR pathway on myocardial apoptosis caused by ischemia/reperfusion injury in rats. Int J Clin Exp Med. 2017;10(10):14194–202.

    Google Scholar 

  36. 36.

    Al-Ansari MM, Hendrayani S-F, Tulbah A, Al-Tweigeri T, Shehata AI, Aboussekhra A. p16INK4A represses breast stromal fibroblasts migration/invasion and their VEGF-A-dependent promotion of angiogenesis through Akt inhibition. Neoplasia (NY). 2012;14(12):1269.

    CAS  Article  Google Scholar 

  37. 37.

    Guo N-L. Isoflurane promotes glucose metabolism through up-regulation of miR-21 and suppresses mitochondrial oxidative phosphorylation in ovarian cancer cells. Biosci Rep. 2017;37(6):BSR20170818.

    CAS  PubMed  Article  Google Scholar 

Download references



Author information




YL and WZ participated in the design and interpretation of the studies. JX, JM and YL conducted the experiments and YL wrote the manuscript. WZ participated in the analysis of the data and review of the manuscript.

Corresponding author

Correspondence to W. Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Availability of data and material

All datasets for this study are included in the manuscript/supplementary files.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luan, Y., Zhang, W., Xie, J. et al. CDKN2A inhibits cell proliferation and invasion in cervical cancer through LDHA-mediated AKT/mTOR pathway. Clin Transl Oncol (2020).

Download citation


  • Cyclin-dependent kinase inhibitor 2A
  • Lactate dehydrogenase
  • Cervical cancer
  • Cell invasion