Gefitinib promotes CXCR4-dependent epithelial to mesenchymal transition via TGF-β1 signaling pathway in lung cancer cells harboring EGFR mutation

Abstract

Purpose

Epithelial to mesenchymal transition (EMT) plays an important role in acquired resistance to gefitinib in lung cancer. This study aimed to explore the underlying mechanism of gefitinib-induced EMT in lung adenocarcinoma cells harboring EGFR mutation.

Methods

CXC chemokine receptor 4 (CXCR4) expression was determined through qRT-PCR, Western blot and flow cytometry assays in lung cancer cell line (PC9) bearing mutated EGFR. Functional role of CXCR4 was inhibited applying siRNAs as well as the specific antagonist AMD3100. The expression of EMT markers was determined, and the migration of PC9 cells was measured with transwell assay.

Results

We found that gefitinib promoted the migratory capacity of PC9 cells in vitro, which correlated with EMT occurrence through upregulation of CXCR4. Blocking CXCR4 significantly suppressed gefitinib-induced enhancement of migration and EMT. Moreover, we determined that the upregulation of CXCR4 by gefitinib was dependent on TGF-β1/Smad2 signaling activity.

Conclusions

Our study suggested a potential mechanism by which gefitinib induced EMT in cells harboring EGFR mutation through a pathway involving TGF-β1 and CXCR4. Thus, the combination of CXCR4 antagonist and TGFβR inhibitors might provide an alternative strategy to overcome progression of lung cancer after gefitinib treatment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA-Cancer J Clin. 2011;61(2):69–90.

    PubMed  Article  Google Scholar 

  2. 2.

    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New Engl J Med. 2004;350(21):2129–39.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98(12):1817–24.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (NY). 2004;304(5676):1497–500.

    CAS  Article  Google Scholar 

  5. 5.

    Appleman LJ. MET signaling pathway: a rational target for cancer therapy. J Clin Oncol. 2011;29(36):4837–8.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Jackman D, Pao W, Riely GJ, Engelman JA, Kris MG, Janne PA, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol. 2010;28(2):357–60.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New Engl J Med. 2005;352(8):786–92.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Nakamura T, Sakai K, Nakamura T, Matsumoto K. Hepatocyte growth factor twenty years on: much more than a growth factor. J Gastroen Hepatol. 2011;26(Suppl 1):188–202.

    CAS  Article  Google Scholar 

  9. 9.

    Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res. 2005;65(20):9455–62.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Suda K, Tomizawa K, Fujii M, Murakami H, Osada H, Maehara Y, et al. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J Thorac Oncol. 2011;6(7):1152–61.

    PubMed  Article  Google Scholar 

  11. 11.

    Rho JK, Choi YJ, Lee JK, Ryoo BY, Na II, Yang SH, et al. Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer. 2009;63(2):219–26.

    PubMed  Article  Google Scholar 

  12. 12.

    Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–9.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hu TH, Yao Y, Yu S, Han LL, Wang WJ, Guo H, et al. SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/beta-catenin signaling pathway. Cancer Lett. 2014;354(2):417–26.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Li X, Li P, Chang Y, Xu Q, Wu Z, Ma Q, et al. The SDF-1/CXCR4 axis induces epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Cell Biochem. 2014;392(1–2):77–84.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Bertran E, Caja L, Navarro E, Sancho P, Mainez J, Murillo MM, et al. Role of CXCR4/SDF-1 alpha in the migratory phenotype of hepatoma cells that have undergone epithelial-mesenchymal transition in response to the transforming growth factor-beta. Cell Signal. 2009;21(11):1595–606.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Bartolome RA, Galvez BG, Longo N, Baleux F, Van Muijen GN, Sanchez-Mateos P, et al. Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res. 2004;64(7):2534–43.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Zhao XP, Huang YY, Huang Y, Lei P, Peng JL, Wu S, et al. Transforming growth factor-beta1 upregulates the expression of CXC chemokine receptor 4 (CXCR4) in human breast cancer MCF-7 cells. Acta Pharmacol Sin. 2010;31(3):347–54.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Gu J, Ding JY, Lu CL, Lin ZW, Chu YW, Zhao GY, et al. Overexpression of CD88 predicts poor prognosis in non-small-cell lung cancer. Lung cancer. 2013;81(2):259–65 (Amsterdam, Netherlands).

    PubMed  Article  Google Scholar 

  20. 20.

    Ehtesham M, Winston JA, Kabos P, Thompson RC. CXCR4 expression mediates glioma cell invasiveness. Oncogene. 2006;25(19):2801–6.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, Nakajima S, et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res. 2000;6(9):3530–5.

    CAS  PubMed  Google Scholar 

  22. 22.

    Komatani H, Sugita Y, Arakawa F, Ohshima K, Shigemori M. Expression of CXCL12 on pseudopalisading cells and proliferating microvessels in glioblastomas: an accelerated growth factor in glioblastomas. Int J Oncol. 2009;34(3):665–72.

    CAS  PubMed  Google Scholar 

  23. 23.

    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43 (NY).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest. 2008;118(7):2609–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69(8):3256–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Serizawa M, Takahashi T, Yamamoto N, Koh Y. Combined treatment with erlotinib and a transforming growth factor-beta type I receptor inhibitor effectively suppresses the enhanced motility of erlotinib-resistant non-small-cell lung cancer cells. J Thorac Oncol. 2013;8(3):259–69.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Zhang SS, Han ZP, Jing YY, Tao SF, Li TJ, Wang H, et al. CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med. 2012;10:85.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Zhu Y, Yang P, Wang Q, Hu J, Xue J, Li G, et al. The effect of CXCR4 silencing on epithelial-mesenchymal transition related genes in glioma U87 cells. Anat Rec. 2013;296(12):1850–6 (Hoboken, NJ : 2007).

    CAS  Article  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation (81872291) Major Research Plan, the Doctoral Fund for Young Scholar of Ministry of Education of China (20110071120065).

Author information

Affiliations

Authors

Contributions

QZ and ZZ performed the research, discussed and analyzed the data and drafted the paper. JG and DG designed the research, discussed and analyzed the data and wrote the paper. CL, FX, WM, KZ, HS and ZL developed methods and provided material supports.

Corresponding authors

Correspondence to J. Gu or D. Ge.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Ethical approval

No human participants or animals were involved in this study, no ethical approval was required.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 444 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Zhang, Z., Lu, C. et al. Gefitinib promotes CXCR4-dependent epithelial to mesenchymal transition via TGF-β1 signaling pathway in lung cancer cells harboring EGFR mutation. Clin Transl Oncol 22, 1355–1363 (2020). https://doi.org/10.1007/s12094-019-02266-w

Download citation

Keywords

  • Gefitinib
  • CXCR4
  • Epithelial to mesenchymal transition
  • TGF-β1
  • EGFR