Clinical and Translational Oncology

, Volume 20, Issue 9, pp 1219–1225 | Cite as

Comparative analysis of the effect of different radiotherapy regimes on lymphocyte and its subpopulations in breast cancer patients

  • C. Yuan
  • Q. Wang
Brief Research Article



The aim of this study was to determine whether different radiotherapy (RT) fractionation schemes induce disparate effects on lymphocyte and its subsets in breast cancer patients.


60 female patients diagnosed with breast cancer were recruited in this study after receiving modified radical mastectomy and were randomly divided into two groups. One group received irradiation at a standard dose of 50 Gy in 25 fractions and the other at a dose of 40.3 Gy in 13 fractions. Both total lymphocyte count and its composition were recorded at three timepoints: right before the radiation treatment (T0), immediately after the last fraction of radiotherapy (T1) and 6 months after irradiation therapy ended (T2).


Both groups experienced temporal lymphopenia after finishing local radiation (T1) (13F T0 vs. T1 1570.6 ± 243.9 vs. 940.6 ± 141.8, **p < 0.01; 25F T0 vs. T1 1620.5 ± 280.2 vs. 948.5 ± 274.6, **p < 0.01), while the lymphocyte count recovered at follow-up time (T2), and the cell count in the hypofractionation group (13F) was higher than the standard fraction group (25F) (13F vs. 25F 1725.6 ± 225.6 vs. 1657.5 ± 242.4, *p < 0.05). With respect to the composition of lymphocyte, we found T cell, B cell, and NK cell reacted differently to different radiotherapy protocols.


Different RT protocols impose different impacts on immunity, leading us to further explore the optimal radiotherapy regimes to synergy with immunotherapy.


Breast cancer Radiotherapy Peripheral lymphocyte Immune-oncology 


Compliance with ethical standards

Conflict of interest

All authors have stated that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Sage EK, Schmid TE, Sedelmayr M, Gehrmann M, Geinitz H, Duma MN, Combs SE, Multhoff G. Comparative analysis of the effects of radiotherapy versus radiotherapy after adjuvant chemotherapy on the composition of lymphocyte subpopulations in breast cancer patients. Radiother Oncol. 2016;118(1):176–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Van de Steene J, Soete G, Storme G. Adjuvant radiotherapy for breast cancer significantly improves overall: the missing link. Radiother Oncol. 2000;55(3):263–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Vinh-Hung V, Verschraegen C. Breast-conserving surgery with or without radiotherapy: pooled-analysis for risks of ipsilateral breast tumor recurrence and mortality. J Natl Cancer Inst. 2004;96(2):115–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Whelan TJ, Pignol JP, Levine MN, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362(6):513–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gough MJ, Crittenden MR. Combination approaches to immunotherapy: the radiotherapy example. Immunotherapy. 2009;1(6):1025–37.CrossRefPubMedGoogle Scholar
  8. 8.
    Hatzi VI, Laskaratou DA, Mavragani IV, Nikitaki Z, Mangelis A, Panayiotidis MI, et al. Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett. 2015;356(1):34–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Cotter SE, Dunn GP, Collins KM, et al. Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy: potential role of induced antitumor immunity. Arch Dermatol. 2011;147(7):870–2.CrossRefPubMedGoogle Scholar
  10. 10.
    Mole R. Whole body irradiation-radiobiology or medicine? Br J Radiol. 1953;26(305):234–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140(6):798–804.CrossRefPubMedGoogle Scholar
  12. 12.
    Ganss R, Ryschich E, Klar E, Arnold B, Hammerling GJ. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res. 2002;62(5):1462–70.PubMedGoogle Scholar
  13. 13.
    Newcomb EW, Demaria S, Lukyanov Y, Shao Y, Schnee T, Kawashima N, Lan L, Dewyngaert JK, Zagzag D, McBride WH, Formenti SC. The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res. 2006;12(15):4730–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Stone HB, Peters LJ, Milas L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst. 1979;63(5):1229–35.PubMedGoogle Scholar
  15. 15.
    Kuss I, Hathaway B, Ferris RL, Gooding W, Whiteside TL. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004;10(11):3755–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Yang ZR, Zhao N, Meng J, Shi ZL, Li BX, Wu XW, et al. Peripheral lymphocyte subset variation predicts prostate cancer carbon ion radiotherapy outcomes. Oncotarget. 2016;7(18):26422–35.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Stamell EF, Wolchok JD, Gnjatic S, et al. The abscopal effect associated with a systemic antimelanoma immune response. Int J Radiat Oncol Biol Phys. 2013;85(2):293–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203(5):1259–71.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shiao SL, Coussens LM. The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia. 2010;15(4):411–21.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wattenberg MM, Fahim A, Mansoor MA, Hodgea JW. Unlocking the Combination: potentiation of radiation-induced antitumor responses with immunotherapy. Radiat Res. 2014;182(2):126–38.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, Yuan J, Zitvogel L, Madeo F, Williams DB, Kroemer G. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28(5):578–90.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    ThompsonRF MaityA. Radiotherapy and the tumor microenvironment: mutual influence and clinical implications. Adv Exp Med Biol. 2014;772:147–65.CrossRefGoogle Scholar
  23. 23.
    Apetoh L, Ghiringhelli F, Tes-niere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor4-dependent contribution of the immune system to anti-cancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Ann Rev Immunol. 2013;31:51–72.CrossRefGoogle Scholar
  25. 25.
    Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta. 2010;1805(1):53–71.PubMedGoogle Scholar
  26. 26.
    Kwilas AR, Donahue RN, Bernstein MB, Hodge JW. In the field: exploiting the untapped potential of immunogenic modulation by radiation in combination with immunotherapy for the treatment of cancer. Front Oncol. 2012;2:104.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174(12):7516–23.CrossRefPubMedGoogle Scholar
  28. 28.
    Demaria S, Ng B, Devitt ML, et al. Ionizing radiation inhibition Of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3):862–70.CrossRefPubMedGoogle Scholar
  29. 29.
    Wolf GT, Schmaltz S, Hudson J, et al. Alterations in T lymphocyte subpopulations in patients with head and neck squamous carcinoma: correlations with prognosis. Arch Otolaryngol. 1987;113(11):1200–6.CrossRefGoogle Scholar
  30. 30.
    Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother Sci. 2013;342(6165):1432–3.Google Scholar
  31. 31.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14(12):1212–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Demaria S, Kawashima N, Yang AM, et al. Immune-mediated inhibition of metastases following treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11(2):728–34.PubMedGoogle Scholar
  34. 34.
    Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, BabbJS Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83(4):1306–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Tsai MH, Cook JA, Chandramouli GV, DeGraff W, et al. Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res. 2007;67(8):3845–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2018

Authors and Affiliations

  1. 1.Cancer Research CenterQilu Hospital of Shandong UniversityJinanChina

Personalised recommendations