Skip to main content

Advertisement

Log in

Magnetic resonance imaging of tumor angiogenesis using dual-targeting RGD10–NGR9 ultrasmall superparamagnetic iron oxide nanoparticles

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Objective

Using RGD10–NGR9 dual-targeting superparamagnetic iron oxide nanoparticles to evaluate their potential value in tumor angiogenesis magnetic resonance imaging (MRI) and the biodistribution in vitro and in vivo.

Materials and methods

Dual-targeting RGD10–NGR9 ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles were designed and synthesized in our previous study. In vitro, prussian blue staining and phenanthroline colorimetry were conducted to evaluate binding affinity and adsorption of dual-targeting USPIO nanoparticles to αvβ3-integrin/APN positive cells. In vivo, a xenograft mouse tumor model was used to evaluate the potential of the dual-targeting nanoparticles as an MRI contrast agent. After intravenous injection, the contrast-to-noise ratio (CNR) values of MR images obtained were calculated at predetermined time-points. The iron level was detected to access the biodistribution and plasma half-time.

Results

In vitro, dual-targeting USPIO nanoparticles bound to proliferating human umbilical vein endothelia cells with high specificity. In vivo, contrast MRI of xenograft mice using dual-targeting nanoparticles demonstrated a significant decrease in signal intensity and a greater increase in CNR than standard MRI and facilitated the imaging of tumor angiogenesis in T2*WI. In terms of biodistribution, dual-targeting USPIO nanoparticles increased to 1.83 times in tumor lesions as compared to the control. And the plasma half-time was about 6.2 h.

Conclusion

A novel RGD10–NGR9 dual-targeting USPIO has a great potential value as a contrast agent for the identification of tumor angiogenesis on MRI, according to the high specific affinity in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6. doi:10.1056/NEJM197111182852108.

    Article  CAS  PubMed  Google Scholar 

  2. Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188(6):759–68. doi:10.1083/jcb.200910104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dobrucki LW, de Muinck ED, Lindner JR, Sinusas AJ. Approaches to multimodality imaging of angiogenesis. J Nucl Med. 2010;51(Suppl 1):66S–79S. doi:10.2967/jnumed.109.074963.

    Article  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  5. Laurent S, Bridot JL, Elst LV, Muller RN. Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem. 2010;2(3):427–49. doi:10.4155/fmc.09.164.

    Article  CAS  PubMed  Google Scholar 

  6. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1–2):24–46. doi:10.1016/j.addr.2010.05.006.

    Article  CAS  PubMed  Google Scholar 

  7. Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed. 2008;3(3):311–21.

    CAS  Google Scholar 

  8. Holig P, Bach M, Volkel T, Nahde T, Hoffmann S, Muller R, et al. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng Des Sel. 2004;17(5):433–41. doi:10.1093/protein/gzh055.

    Article  PubMed  Google Scholar 

  9. Corti A, Curnis F, Arap W, Pasqualini R. The neovasculature homing motif NGR: more than meets the eye. Blood. 2008;112(7):2628–35. doi:10.1182/blood-2008-04-150862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harris TD, Kalogeropoulos S, Nguyen T, Liu S, Bartis J, Ellars C, et al. Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biother Radiopharm. 2003;18(4):627–41. doi:10.1089/108497803322287727.

    Article  CAS  PubMed  Google Scholar 

  11. Bhagwat SV, Petrovic N, Okamoto Y, Shapiro LH. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood. 2003;101(5):1818–26. doi:10.1182/blood-2002-05-1422.

    Article  CAS  PubMed  Google Scholar 

  12. Curnis F, Sacchi A, Gasparri A, Longhi R, Bachi A, Doglioni C, et al. Isoaspartate-glycine-arginine: a new tumor vasculature-targeting motif. Cancer Res. 2008;68(17):7073–82. doi:10.1158/0008-5472.CAN-08-1272.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res. 2007;67(4):1555–62. doi:10.1158/0008-5472.CAN-06-1668.

    Article  CAS  PubMed  Google Scholar 

  14. Oostendorp M, Douma K, Hackeng TM, Dirksen A, Post MJ, van Zandvoort MA, et al. Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. Cancer Res. 2008;68(18):7676–83. doi:10.1158/0008-5472.CAN-08-0689.

    Article  CAS  PubMed  Google Scholar 

  15. Wu QY, Shi JY, Zhang J, Zhang LQ, Zhao YM, Tang L, et al. Preparation of ανβ3 integrin and aminopeptidase N dual-targeting RGD10-NGR9-superparamagnetic iron oxide. Chin J Med Imaging Tech. 2013;29(9):1418–22.

    Google Scholar 

  16. Braunschweig J, Bosch J, Heister K, Kuebeck C, Meckenstock RU. Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology. J Microbiol Methods. 2012;89(1):41–8. doi:10.1016/j.mimet.2012.01.021.

    Article  CAS  PubMed  Google Scholar 

  17. Maupetit J, Derreumaux P, Tuffery P. PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res. 2009;37:W498–503. doi:10.1093/nar/gkp323 (Web Server issue).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maupetit J, Derreumaux P, Tuffery P. A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem. 2010;31(4):726–38. doi:10.1002/jcc.21365.

    CAS  PubMed  Google Scholar 

  19. Hsieh W-J, Liang C-J, Chieh J-J, Wang S-H, Lai IR, Chen J-H, et al. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles. Int J Nanomed. 2012;7:2833–42. doi:10.2147/IJN.S32154.

    CAS  Google Scholar 

  20. Dijkgraaf I, Beer AJ, Wester HJ. Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci (Landmark Ed). 2009;14:887–99.

    Article  CAS  PubMed  Google Scholar 

  21. Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem. 2007;7(5):552–8.

    Article  CAS  PubMed  Google Scholar 

  22. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377–80.

    Article  CAS  PubMed  Google Scholar 

  23. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc. 2005;127(16):5732–3. doi:10.1021/ja0422155.

    Article  CAS  PubMed  Google Scholar 

  24. Taupitz M, Schmitz S, Hamm B. Superparamagnetic iron oxide particles: current state and future development. Rofo. 2003;175(6):752–65. doi:10.1055/s-2003-39935.

    Article  CAS  PubMed  Google Scholar 

  25. Meng W, Parker TL, Kallinteri P, Walker DA, Higgins S, Hutcheon GA, et al. Uptake and metabolism of novel biodegradable poly (glycerol-adipate) nanoparticles in DAOY monolayer. J Control Release. 2006;116(3):314–21. doi:10.1016/j.jconrel.2006.09.014.

    Article  CAS  PubMed  Google Scholar 

  26. Jensen KD, Nori A, Tijerina M, Kopeckova P, Kopecek J. Cytoplasmic delivery and nuclear targeting of synthetic macromolecules. J Control Release. 2003;87(1–3):89–105.

    Article  CAS  PubMed  Google Scholar 

  27. Trivedi RA, Jean-Marie U, Graves MJ, Cross JJ, Horsley J, Goddard MJ, et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke. 2004;35(7):1631–5. doi:10.1161/01.STR.0000131268.50418.b7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Commission of Shanghai Municipality (No. 14411966400, 15ZR1434500), National Natural Science Foundation of China (No. 81572269).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Zhang or J.-Y. Shi.

Ethics declarations

Conflict of interest

The authors indicate no potential conflicts of interest.

Ethical approval

The animal study was conducted in accordance with the Institutional Animal Care and Use Committee (IACUC) guidelines and was under approval of Tongji University Animal Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Ding, X., Su, B. et al. Magnetic resonance imaging of tumor angiogenesis using dual-targeting RGD10–NGR9 ultrasmall superparamagnetic iron oxide nanoparticles. Clin Transl Oncol 20, 599–606 (2018). https://doi.org/10.1007/s12094-017-1753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1753-8

Keywords

Navigation