Skip to main content

Advertisement

Log in

Central nervous system niche involvement in the leukemia

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Central nervous system (CNS) impairment is commonly involved in leukemia, as it can be observed upon onset or relapse of the disease. It is associated with poor prognosis and is a challenging clinical problem. The objective of this paper was to provide a characterization of the CNS niche in leukemia, to elucidate the culprits of CNS involvement, including diagnostic micro RNAs (miRs) and early leukemia prognosis. CNS niche is a proper location for homing of leukemic stem cells, thus representing a candidate target in the treatment of leukemia. Recent advances in the study of leukemia hallmarks have enlightened miRs as novel biomarkers for diagnosis and detection of CNS involvement in leukemia, thus providing the opportunity to develop novel therapeutic approaches. Given the importance of prognosis and early diagnosis of CNS involvement in leukemias as well as the severe side effects of current treatments, diagnostic and therapeutic approaches should focus on identification and inhibition of the factors contributing to CNS involvement, including CXCR3, P-selectin glycoprotein ligand-1 and MCP1. MiRs such as miR-221 and miR-222 are emerging as potential tools for an innovative non-invasive therapy of CNS in leukemia affected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gomes HR. Cerebrospinal fluid approach on neuro-oncology. Arquivos de Neuro-psiquiatria. 2013;71(9B):677–80.

    Article  PubMed  Google Scholar 

  2. Wang L, O’Leary H, Fortney J, Gibson LF. Ph+/VE-cadherin+ identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells. Blood. 2007;110(9):3334–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Aoki J, Ishiyama K, Taniguchi S, Fukuda T, Ohashi K, Ogawa H, et al. Outcome of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia patients with central nervous system involvement. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 2014;20(12):2029–33. doi:10.1016/j.bbmt.2014.09.001.

    Article  Google Scholar 

  4. Buakhao J, Tansawet A. Cauda equina involvement in acute myeloid leukemia relapse. J Med Assoc Thailand = Chotmaihet Thangphaet. 2011;94(10):1271–5.

    Google Scholar 

  5. Ahmadzadeh A, Saedi S, Jaseb K, Asnafi AA, Alghasi A, Saki N. T-cell Acute Lymphoblastic Leukemia with del (7) (q11.2q22) and Aberrant Expression of Myeloid Markers. Int J Hematol Oncol Stem Cell Res. 2013;7(4):40–4.

    PubMed Central  PubMed  Google Scholar 

  6. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(14):1663–9.

    Article  Google Scholar 

  7. Thomas X, Le QH. Central nervous system involvement in adult acute lymphoblastic leukemia. Hematology (Amsterdam, Netherlands). 2008;13(5):293–302.

    Google Scholar 

  8. Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9(3):257–68.

    Article  PubMed  Google Scholar 

  9. Pui CH, Thiel E. Central nervous system disease in hematologic malignancies: historical perspective and practical applications. Semin Oncol. 2009;36(4 Suppl 2):S2–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pui CH, Boyett JM, Rivera GK, Hancock ML, Sandlund JT, Ribeiro RC, et al. Long-term results of Total Therapy studies 11, 12 and 13A for childhood acute lymphoblastic leukemia at St Jude Children’s Research Hospital. Leukemia. 2000;14(12):2286–94.

    Article  CAS  PubMed  Google Scholar 

  11. Benjamini O, Jain P, Schlette E, Sciffman JS, Estrov Z, Keating M. Chronic lymphocytic leukemia with central nervous system involvement: a high-risk disease? Clin Lymphoma Myeloma Leuk. 2013;13(3):338–41.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bower JH, Hammack JE, McDonnell SK, Tefferi A. The neurologic complications of B-cell chronic lymphocytic leukemia. Neurology. 1997;48(2):407–12.

    Article  CAS  PubMed  Google Scholar 

  13. Breccia M, Santopietro M, Cannella L, Federico V, Loglisci G, Serrao A, et al. Isolated central nervous system relapse after 9 years of complete molecular remission in a lymphoid blast crisis of chronic myeloid leukemia treated with imatinib. Leuk Res. 2011;35(6):e91–2.

    Article  PubMed  Google Scholar 

  14. Langley RR, Fidler IJ. The biology of brain metastasis. Clin Chem. 2013;59(1):180–9.

    Article  CAS  PubMed  Google Scholar 

  15. Termini J, Neman J, Jandial R. Role of the neural niche in brain metastatic cancer. Cancer Res. 2014;74(15):4011–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cortes J. Central nervous system involvement in adult acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2001;15(1):145–62.

    Article  CAS  PubMed  Google Scholar 

  17. ElGendi HM, Abdelmaksoud AA, Eissa DG, Abusikkien SA. Impact of TCF3 rearrangement on CNS relapse in egyptian pediatric acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2014;31(7):638–46.

    Article  CAS  PubMed  Google Scholar 

  18. Leis JF, Stepan DE, Curtin PT, Ford JM, Peng B, Schubach S, et al. Central nervous system failure in patients with chronic myelogenous leukemia lymphoid blast crisis and Philadelphia chromosome positive acute lymphoblastic leukemia treated with imatinib (STI-571). Leuk lymphoma. 2004;45(4):695–8.

    Article  CAS  PubMed  Google Scholar 

  19. Leveille F, Soriano FX, Papadia S, Hardingham GE. Excitotoxic insults lead to peroxiredoxin hyperoxidation. Oxidative Med Cell Longev. 2009;2(2):110–3.

    Article  Google Scholar 

  20. Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol. 2009;220(3):562–8.

    Article  CAS  PubMed  Google Scholar 

  21. Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev. 2003;13(5):543–50.

    Article  CAS  PubMed  Google Scholar 

  22. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41(5):683–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008;8(4):290–301.

    Article  CAS  PubMed  Google Scholar 

  24. Bayer SA. Neuron production in the hippocampus and olfactory bulb of the adult rat brain: addition or replacement? Ann N Y Acad Sci. 1985;457:163–72.

    Article  CAS  PubMed  Google Scholar 

  25. Bayer SA, Yackel JW, Puri PS. Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science (New York, NY). 1982;216(4548):890–2.

    Article  CAS  Google Scholar 

  26. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol. 1998;36(2):249–66.

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan MS, Hinds JW. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science (New York, NY). 1977;197(4308):1092–4.

    Article  CAS  Google Scholar 

  28. Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA. 1993;90(5):2074–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Seri B, Herrera DG, Gritti A, Ferron S, Collado L, Vescovi A, et al. Composition and organization of the SCZ: a large germinal layer containing neural stem cells in the adult mammalian brain. Cerebral Cortex (New York, NY: 1991). 2006; 16 Suppl 1:i103–11.

  30. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.

    Article  CAS  PubMed  Google Scholar 

  31. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8(6):723–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010;467(7313):323–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D. Notch signaling is required to maintain all neural stem cell populations–irrespective of spatial or temporal niche. Dev Neurosci. 2006;28(1–2):34–48.

    Article  CAS  PubMed  Google Scholar 

  34. Sun Y, Goderie SK, Temple S. Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron. 2005;45(6):873–86.

    Article  CAS  PubMed  Google Scholar 

  35. Pastrana E, Cheng LC, Doetsch F. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA. 2009;106(15):6387–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C, Ferron SR, Aroca-Aguilar JD, Sanchez P, et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci. 2006;9(3):331–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci. 2011;12(5):269–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell. 2010;7(2):163–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bonaguidi MA, McGuire T, Hu M, Kan L, Samanta J, Kessler JA. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development (Cambridge, England). 2005;132(24):5503–14.

    Article  CAS  Google Scholar 

  40. Bonaguidi MA, Peng CY, McGuire T, Falciglia G, Gobeske KT, Czeisler C, et al. Noggin expands neural stem cells in the adult hippocampus. J Neurosci Off J Soc Neurosci. 2008;28(37):9194–204.

    Article  CAS  Google Scholar 

  41. Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, et al. Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res. 2010;70(5):2030–40.

    Article  CAS  PubMed  Google Scholar 

  42. Gomes WA, Mehler MF, Kessler JA. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol. 2003;255(1):164–77.

    Article  CAS  PubMed  Google Scholar 

  43. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000;28(3):713–26.

    Article  CAS  PubMed  Google Scholar 

  44. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science (New York, NY). 2004;304(5675):1338–40.

    Article  CAS  Google Scholar 

  45. Louissaint A Jr, Rao S, Leventhal C, Goldman SA. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron. 2002;34(6):945–60.

    Article  CAS  PubMed  Google Scholar 

  46. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425(4):479–94.

    Article  CAS  PubMed  Google Scholar 

  47. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci. 1999;13(6):450–64.

    Article  CAS  PubMed  Google Scholar 

  48. Emsley JG, Hagg T. alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp Neurol. 2003;183(2):273–85.

    Article  CAS  PubMed  Google Scholar 

  49. Shen Y, Yu LC. Potential protection of curcumin against hypoxia-induced decreases in beta-III tubulin content in rat prefrontal cortical neurons. Neurochem Res. 2008;33(10):2112–7.

    Article  CAS  PubMed  Google Scholar 

  50. Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends in molecular medicine. 2007;13(2):72–81.

    Article  CAS  PubMed  Google Scholar 

  51. Chute JP. Stem cell homing. Curr Opin Hematol. 2006;13(6):399–406.

    Article  PubMed  Google Scholar 

  52. Casillas JN, Woods WG, Hunger SP, McGavran L, Alonzo TA, Feig SA. Prognostic implications of t(10, 11) translocations in childhood acute myelogenous leukemia: a report from the Children’s Cancer Group. J Pediatr Hematol Oncol. 2003;25(8):594–600.

    Article  PubMed  Google Scholar 

  53. Incesoy-Ozdemir S, Sahin G, Bozkurt C, Oren AC, Balkaya E, Ertem U. The relationship between cerebrospinal fluid osteopontin level and central nervous system involvement in childhood acute leukemia. Turk J Pediatr. 2013;55(1):42–9.

    PubMed  Google Scholar 

  54. Jeha S, Pei D, Raimondi SC, Onciu M, Campana D, Cheng C, et al. Increased risk for CNS relapse in pre-B cell leukemia with the t(1, 19)/TCF3-PBX1. Leukemia. 2009;23(8):1406–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lazarus HM, Richards SM, Chopra R, Litzow MR, Burnett AK, Wiernik PH, et al. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993. Blood. 2006;108(2):465–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Rao S, Langston A, Galt JR, Halkar RK. Extramedullary acute myeloid leukemia and the use of FDG-PET/CT. Clin Nucl Med. 2009;34(6):365–6.

    Article  PubMed  Google Scholar 

  57. Reman O, Pigneux A, Huguet F, Vey N, Delannoy A, Fegueux N, et al. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis and/or at first relapse: results from the GET-LALA group. Leuk Res. 2008;32(11):1741–50.

    Article  PubMed  Google Scholar 

  58. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG, et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature. 2009;459(7249):1000–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Martinez-Laperche C, Gomez-Garcia AM, Lassaletta A, Moscardo C, Vivanco JL, Molina J, et al. Detection of occult cerebrospinal fluid involvement during maintenance therapy identifies a group of children with acute lymphoblastic leukemia at high risk for relapse. Am J Hematol. 2013;88(5):359–64.

    Article  CAS  PubMed  Google Scholar 

  60. Simone JV. History of the treatment of childhood ALL: a paradigm for cancer cure. Best Pract Res Clin Haematol. 2006;19(2):353–9.

    Article  PubMed  Google Scholar 

  61. Booth V, Keizer DW, Kamphuis MB, Clark-Lewis I, Sykes BD. The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions. Biochemistry. 2002;41(33):10418–25.

    Article  CAS  PubMed  Google Scholar 

  62. Craig MJ, Loberg RD. CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev. 2006;25(4):611–9.

    Article  CAS  PubMed  Google Scholar 

  63. Prat A, Biernacki K, Lavoie JF, Poirier J, Duquette P, Antel JP. Migration of multiple sclerosis lymphocytes through brain endothelium. Arch Neurol. 2002;59(3):391–7.

    Article  PubMed  Google Scholar 

  64. Ferron SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature. 2011;475(7356):381–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci Off J Soc Neurosci. 2010;30(9):3489–98.

    Article  CAS  Google Scholar 

  66. Sawada M, Sawamoto K. Mechanisms of neurogenesis in the normal and injured adult brain. Keio J Med. 2013;62(1):13–28.

    Article  CAS  PubMed  Google Scholar 

  67. Gajera CR, Emich H, Lioubinski O, Christ A, Beckervordersandforth-Bonk R, Yoshikawa K, et al. LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J Cell Sci. 2010;123(Pt 11):1922–30.

    Article  CAS  PubMed  Google Scholar 

  68. Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell. 2010;7(1):78–89.

    Article  CAS  PubMed  Google Scholar 

  69. Yao T, Lin Z. MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20. Biochim Biophys Acta. 2012;1822(2):248–60.

    Article  CAS  PubMed  Google Scholar 

  70. Adachi K, Mirzadeh Z, Sakaguchi M, Yamashita T, Nikolcheva T, Gotoh Y, et al. Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells (Dayton, Ohio). 2007;25(11):2827–36.

    Article  CAS  Google Scholar 

  71. Bizen N, Inoue T, Shimizu T, Tabu K, Kagawa T, Taga T. A growth-promoting signaling component cyclin D1 in neural stem cells has antiastrogliogenic function to execute self-renewal. Stem Cells (Dayton, Ohio). 2014;32(6):1602–15.

    Article  CAS  Google Scholar 

  72. Campos LS, Leone DP, Relvas JB, Brakebusch C, Fassler R, Suter U, et al. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development (Cambridge, England). 2004;131(14):3433–44.

    Article  CAS  Google Scholar 

  73. Klingener M, Chavali M, Singh J, McMillan N, Coomes A, Dempsey PJ, et al. N-cadherin promotes recruitment and migration of neural progenitor cells from the SVZ neural stem cell niche into demyelinated lesions. J Neurosci Off J Soc Neurosci. 2014;34(29):9590–606.

    Article  CAS  Google Scholar 

  74. Yun CH, Lee HM, Lee SC, Kim BS, Park JW, Lee BJ. Involvement of CD137 ligand signaling in neural stem cell death. Mol Cells. 2013;36(3):245–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Galve-Roperh I, Chiurchiu V, Diaz-Alonso J, Bari M, Guzman M, Maccarrone M. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res. 2013;52(4):633–50.

    Article  CAS  PubMed  Google Scholar 

  76. Arvanitis DN, Behar A, Tryoen-Toth P, Bush JO, Jungas T, Vitale N, et al. Ephrin B1 maintains apical adhesion of neural progenitors. Development (Cambridge, England). 2013;140(10):2082–92.

    Article  CAS  Google Scholar 

  77. Tan R, Lee YJ, Chen X. Id-1 plays a key role in cell adhesion in neural stem cells through the preservation of RAP1 signaling. Cell Adhes Migr. 2012;6(1):1–3.

    Article  Google Scholar 

  78. Leong SY, Turnley AM. Regulation of adult neural precursor cell migration. Neurochem Int. 2011;59(3):382–93.

    Article  CAS  PubMed  Google Scholar 

  79. Bachmann MF, Kopf M, Marsland BJ. Chemokines: more than just road signs. Nat Rev Immunol. 2006;6(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  80. Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci Off J Soc Neurosci. 2002;22(14):5865–78.

    CAS  Google Scholar 

  81. van der Meer P, Ulrich AM, Gonzalez-Scarano F, Lavi E. Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia. Exp Mol Pathol. 2000;69(3):192–201.

    Article  PubMed  CAS  Google Scholar 

  82. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10(5):514–23.

    Article  CAS  PubMed  Google Scholar 

  83. Lewellis SW, Knaut H. Attractive guidance: how the chemokine SDF1/CXCL12 guides different cells to different locations. Semin Cell Dev Biol. 2012;23(3):333–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Tiveron MC, Cremer H. CXCL12/CXCR4 signalling in neuronal cell migration. Curr Opin Neurobiol. 2008;18(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB, et al. CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron. 2011;69(1):61–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Meechan DW, Tucker ES, Maynard TM, LaMantia AS. Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome. Proc Natl Acad Sci USA. 2012;109(45):18601–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–71.

    Article  PubMed  CAS  Google Scholar 

  88. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    Article  CAS  PubMed  Google Scholar 

  89. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell. 2007;11(6):526–38.

    Article  CAS  PubMed  Google Scholar 

  90. Gonzalez-Perez O, Gutierrez-Fernandez F, Lopez-Virgen V, Collas-Aguilar J, Quinones-Hinojosa A, Garcia-Verdugo JM. Immunological regulation of neurogenic niches in the adult brain. Neuroscience. 2012;13(226):270–81.

    Article  CAS  Google Scholar 

  91. Akers SM, O’Leary HA, Minnear FL, Craig MD, Vos JA, Coad JE, et al. VE-cadherin and PECAM-1 enhance ALL migration across brain microvascular endothelial cell monolayers. Exp Hematol. 2010;38(9):733–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Arefieva TI, Kukhtina NB, Antonova OA, Krasnikova TL. MCP-1-stimulated chemotaxis of monocytic and endothelial cells is dependent on activation of different signaling cascades. Cytokine. 2005;31(6):439–46.

    Article  CAS  PubMed  Google Scholar 

  93. Hart G, Avin-Wittenberg T, Shachar I. IL-15 regulates immature B-cell homing in an Ly49D-, IL-12, and IL-18 dependent manner. Blood. 2008;111(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  94. Williams MT, Yousafzai Y, Cox C, Blair A, Carmody R, Sai S, et al. Interleukin-15 enhances cellular proliferation and upregulates CNS homing molecules in pre-B acute lymphoblastic leukemia. Blood. 2014;123(20):3116–27.

    Article  CAS  PubMed  Google Scholar 

  95. Barata JT, Keenan TD, Silva A, Nadler LM, Boussiotis VA, Cardoso AA. Common gamma chain-signaling cytokines promote proliferation of T-cell acute lymphoblastic leukemia. Haematologica. 2004;89(12):1459–67.

    CAS  PubMed  Google Scholar 

  96. Mishra A, Liu S, Sams GH, Curphey DP, Santhanam R, Rush LJ, et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell. 2012;22(5):645–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Cario G, Izraeli S, Teichert A, Rhein P, Skokowa J, Moricke A, et al. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(30):4813–20.

    Article  CAS  Google Scholar 

  98. Harakawa N, Shigeta A, Wato M, Merrill-Skoloff G, Furie BC, Furie B, et al. P-selectin glycoprotein ligand-1 mediates L-selectin-independent leukocyte rolling in high endothelial venules of peripheral lymph nodes. Int Immunol. 2007;19(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  99. Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, et al. Human cerebrospinal fluid central memory CD4 + T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA. 2003;100(14):8389–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Alter A, Duddy M, Hebert S, Biernacki K, Prat A, Antel JP, et al. Determinants of human B cell migration across brain endothelial cells. J Immunol (Baltimore, Md: 1950). 2003;170(9):4497–505.

    Article  CAS  Google Scholar 

  101. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev. 2004;84(3):869–901.

    Article  CAS  PubMed  Google Scholar 

  102. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science (New York, NY). 2011;334(6063):1727–31.

    Article  CAS  Google Scholar 

  103. Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S. Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain J Neurol. 2009;132(Pt 4):1078–92.

    Google Scholar 

  104. Tsai KJ, Tsai YC, Shen CK. G-CSF rescues the memory impairment of animal models of Alzheimer’s disease. J Exp Med. 2007;204(6):1273–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Kawamata T, Ohno N, Sato K, Kobayashi M, Jo N, Yuji K, et al. A case of post-transplant adult T-cell leukemia/lymphoma presenting myelopathy similar to but distinct from human T-cell leukemia virus type I (HTLV-I)-associated myelopathy. SpringerPlus. 2014;3:581.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Terlou A, Santegoets LA, van der Meijden WI, Heijmans-Antonissen C, Swagemakers SM, van der Spek PJ, et al. An autoimmune phenotype in vulvar lichen sclerosus and lichen planus: a Th1 response and high levels of microRNA-155. J Invest Dermatol. 2012;132(3 Pt 1):658–66.

    Article  CAS  PubMed  Google Scholar 

  107. Guo M, Mao X, Ji Q, Lang M, Li S, Peng Y, et al. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol Cell Biol. 2010;88(5):555–64.

    Article  CAS  PubMed  Google Scholar 

  108. Ren D, Wang X, Ha T, Liu L, Kalbfleisch J, Gao X, et al. SR-A deficiency reduces myocardial ischemia/reperfusion injury; involvement of increased microRNA-125b expression in macrophages. Biochim Biophys Acta. 2013;1832(2):336–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X, et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215(2):286–93.

    Article  CAS  PubMed  Google Scholar 

  110. Eisenkraft A, Keidan I, Bielorai B, Keller N, Toren A, Paret G. MCP-1 in the cerebrospinal fluid of children with acute lymphoblastic leukemia. Leuk Res. 2006;30(10):1259–61.

    Article  CAS  PubMed  Google Scholar 

  111. Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol (Baltimore, Md). 2009;23(11):1876–84.

    Article  CAS  Google Scholar 

  112. Gerard A, Khan O, Beemiller P, Oswald E, Hu J, Matloubian M, et al. Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. Nat Immunol. 2013;14(4):356–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med. 2004;10(4):171–8.

    Article  CAS  PubMed  Google Scholar 

  114. Karbiener M, Neuhold C, Opriessnig P, Prokesch A, Bogner-Strauss JG, Scheideler M. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 2011;8(5):850–60.

    Article  CAS  PubMed  Google Scholar 

  115. Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Modulation of inflammatory markers by miR-146a during replicative senescence in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2010;51(6):2976–85.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Muth M, Theophile K, Hussein K, Jacobi C, Kreipe H, Bock O. Hypoxia-induced down-regulation of microRNA-449a/b impairs control over targeted SERPINE1 (PAI-1) mRNA—a mechanism involved in SERPINE1 (PAI-1) overexpression. J Transl Med. 2010;8:33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Lodolce JP, Burkett PR, Koka RM, Boone DL, Ma A. Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev. 2002;13(6):429–39.

    Article  CAS  PubMed  Google Scholar 

  118. Angel-Morales G, Noratto G, Mertens-Talcott S. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: potential role of microRNA-126. Food Funct. 2012;3(7):745–52.

    Article  CAS  PubMed  Google Scholar 

  119. Hu G, Gong AY, Liu J, Zhou R, Deng C, Chen XM. miR-221 suppresses ICAM-1 translation and regulates interferon-gamma-induced ICAM-1 expression in human cholangiocytes. Am J Physiol Gastrointest Liver Physiol. 2010;298(4):G542–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Kan AA, van Erp S, Derijck AA, de Wit M, Hessel EV, O’Duibhir E, et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci CMLS. 2012;69(18):3127–45.

    Article  CAS  PubMed  Google Scholar 

  121. Romero IA, Prevost MC, Perret E, Adamson P, Greenwood J, Couraud PO, et al. Interactions between brain endothelial cells and human T-cell leukemia virus type 1-infected lymphocytes: mechanisms of viral entry into the central nervous system. J Virol. 2000;74(13):6021–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol (Baltimore, Md: 1950). 2010;184(1):21–5.

    Article  CAS  Google Scholar 

  123. Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA. 2009;106(26):10746–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol. 2002;157(7):1233–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA. 2010;107(30):13450–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Noratto GD, Angel-Morales G, Talcott ST, Mertens-Talcott SU. Polyphenolics from acai (Euterpe oleracea Mart.) and red muscadine grape (Vitis rotundifolia) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126. J Agric Food Chem. 2011;59(14):7999–8012.

    Article  CAS  PubMed  Google Scholar 

  127. Gao J, Yang T, Han J, Yan K, Qiu X, Zhou Y, et al. MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. J Cell Biochem. 2011;112(7):1844–56.

    Article  CAS  PubMed  Google Scholar 

  128. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011;71(5):1550–60.

    Article  CAS  PubMed  Google Scholar 

  129. Matsumoto T, Jimi S, Hara S, Takamatsu Y, Suzumiya J, Tamura K. Am 80 inhibits stromal cell-derived factor-1-induced chemotaxis in T-cell acute lymphoblastic leukemia cells. Leukemia Lymphoma. 2010;51(3):507–14.

    Article  CAS  PubMed  Google Scholar 

  130. Pillai MM, Yang X, Balakrishnan I, Bemis L, Torok-Storb B. MiR-886-3p down regulates CXCL12 (SDF1) expression in human marrow stromal cells. PLoS One. 2010;5(12):e14304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Poh KW, Yeo JF, Ong WY. MicroRNA changes in the mouse prefrontal cortex after inflammatory pain. Eur J pain (London, England). 2011; 15(8):801e1–12.

  132. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.

    Article  PubMed  Google Scholar 

  133. Roberts TK, Eugenin EA, Lopez L, Romero IA, Weksler BB, Couraud PO, et al. CCL2 disrupts the adherens junction: implications for neuroinflammation. Lab Investig J Tech Methods Pathol. 2012;92(8):1213–33.

    Article  CAS  Google Scholar 

  134. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science (New York, NY). 2004;306(5694):269–71.

    Article  CAS  Google Scholar 

  135. Cardona AE, Li M, Liu L, Savarin C, Ransohoff RM. Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. J Leukoc Biol. 2008;84(3):587–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. New Engl J Med. 2006;354(6):610–21.

    Article  CAS  PubMed  Google Scholar 

  137. Williams CK, Segarra M, Sierra ML, Sainson RC, Tosato G, Harris AL. Regulation of CXCR4 by the Notch ligand delta-like 4 in endothelial cells. Cancer Res. 2008;68(6):1889–95.

    Article  CAS  PubMed  Google Scholar 

  138. Pui CH. Central nervous system disease in acute lymphoblastic leukemia: prophylaxis and treatment. Hematol/Educ Program Am Soc Hematol Am Soc Hematol Educ Program. 2006:142–6.

  139. Burger B, Zimmermann M, Mann G, Kuhl J, Loning L, Riehm H, et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(2):184–8.

    Article  Google Scholar 

  140. de Botton S, Sanz MA, Chevret S, Dombret H, Martin G, Thomas X, et al. Extramedullary relapse in acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Leukemia. 2006;20(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  141. Pfeifer H, Wassmann B, Hofmann WK, Komor M, Scheuring U, Bruck P, et al. Risk and prognosis of central nervous system leukemia in patients with Philadelphia chromosome-positive acute leukemias treated with imatinib mesylate. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(13):4674–81.

    CAS  Google Scholar 

  142. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science (New York, NY). 2008;322(5909):1861–5.

    Article  CAS  Google Scholar 

  143. Stellos K, Gawaz M. Platelets and stromal cell-derived factor-1 in progenitor cell recruitment. Semin Thromb Hemost. 2007;33(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  144. Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA, et al. SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development (Cambridge, England). 2011;128(11):1971–81.

    Google Scholar 

  145. Chen Y, Jacamo R, Konopleva M, Garzon R, Croce C, Andreeff M. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Investig. 2013;123(6):2395–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Podolska A, Kaczkowski B, Kamp Busk P, Sokilde R, Litman T, Fredholm M, et al. MicroRNA expression profiling of the porcine developing brain. PLoS ONE. 2011;6(1):e14494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Frenquelli M, Muzio M, Scielzo C, Fazi C, Scarfo L, Rossi C, et al. MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood. 2010;115(19):3949–59.

    Article  CAS  PubMed  Google Scholar 

  148. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all our colleagues in Shafa Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Saki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, N., Saki, N., De Filippis, L. et al. Central nervous system niche involvement in the leukemia. Clin Transl Oncol 18, 240–250 (2016). https://doi.org/10.1007/s12094-015-1370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-015-1370-3

Keywords

Navigation