Microalgal-Bacterial Consortia as Future Prospect in Wastewater Bioremediation, Environmental Management and Bioenergy Production


In the recent years, microalgae have captured researchers’ attention as the alternative feedstock for various bioenergy production such as biodiesel, biohydrogen, and bioethanol. Cultivating microalgae in wastewaters to simultaneously bioremediate the nutrient-rich wastewater and maintain a high biomass yield is a more economical and environmentally friendly approach. The incorporation of algal–bacterial interaction reveals the mutual relationship of microorganisms where algae are primary producers of organic compounds from CO2, and heterotrophic bacteria are secondary consumers decomposing the organic compounds produced from algae. This review would provide an insight on the challenges and future development of algal–bacterial consortium and its contribution in promoting a sustainable route to greener industry. It is believed that microalgal-bacterial consortia will be implemented in the near-future for sub-sequential treatment of wastewater bioremediation, bioenergy production and CO2 fixation, promoting sustainability and making extraordinary advancement in life sciences sectors.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Leong WH, Zaine SNA, Ho YC, Uemura Y, Lam MK, Khoo KS, Kiatkittipong W, Cheng CK, Show PL, Lim JW (2019) Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. J Environ Manag 249:109384. https://doi.org/10.1016/j.jenvman.2019.109384

    CAS  Article  Google Scholar 

  2. 2.

    Rashid N, Rehman MSU, Sadiq M, Mahmood T, Han J-I (2014) Current status, issues and developments in microalgae derived biodiesel production. Renew Sust Energy Rev 40:760–778. https://doi.org/10.1016/j.rser.2014.07.104

    CAS  Article  Google Scholar 

  3. 3.

    Rosli SS, Kadir WNA, Wong CY, Han FY, Lim JW, Lam MK, Yusup S, Kiatkittipong W, Kiatkittipong K, Usman A (2020) Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation. Renew Sust Energ Rev 134:110306. https://doi.org/10.1016/j.rser.2020.110306

    CAS  Article  Google Scholar 

  4. 4.

    Nitsos C, Filali R, Taidi B, Lemaire J (2020) Current and novel approaches to downstream processing of microalgae: a review. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2020.107650

    Article  PubMed  Google Scholar 

  5. 5.

    Arita CEQ, Peebles C, Bradley TH (2015) Scalability of combining microalgae-based biofuels with wastewater facilities: a review. Algal Res 9:160–169. https://doi.org/10.1016/j.algal.2015.03.001

    Article  Google Scholar 

  6. 6.

    Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (2018) Nanotechnology, food security and water treatment, vol 11. Springer, Berlin

    Google Scholar 

  7. 7.

    Kouzuma A, Watanabe K (2015) Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol 33:125–129. https://doi.org/10.1016/j.copbio.2015.02.007

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A (2019) Microalgae–bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol 126:359–368. https://doi.org/10.1111/jam.14095

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Shah MP, Rodriguez-Couto S (2019) Microbial wastewater treatment. Elsevier, Amsterdam

    Google Scholar 

  10. 10.

    Ramanan R, Kim B-H, Cho D-H, Oh H-M, Kim H-S (2016) Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Mahdavi H, Prasad V, Liu Y, Ulrich AC (2015) In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae–bacteria consortium. Bioresour Technol 187:97–105. https://doi.org/10.1016/j.biortech.2015.03.091

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ahmad A, Buang A, Bhat A (2016) Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): a review. Renew Sust Energ Rev 65:214–234. https://doi.org/10.1016/j.rser.2016.06.084

    CAS  Article  Google Scholar 

  13. 13.

    Molinuevo-Salces B, Riaño B, Hernández D, García-González MC (2019) Microalgae and wastewater treatment: advantages and disadvantages. In: Microalgae biotechnology for development of biofuel and wastewater treatment. Springer, Berlin, pp 505–533

  14. 14.

    Chang J-S, Show P-L, Ling T-C, Chen C-Y, Ho S-H, Tan C-H, Nagarajan D, Phong W-N (2017) Photobioreactors. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 313–352. https://doi.org/10.1016/B978-0-444-63663-8.00011-2

  15. 15.

    Ji X, Li H, Zhang J, Saiyin H, Zheng Z (2019) The collaborative effect of Chlorella vulgaris-Bacillus licheniformis consortia on the treatment of municipal water. J Hazard Mater 365:483–493. https://doi.org/10.1016/j.jhazmat.2018.11.039

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Foladori P, Petrini S, Nessenzia M, Andreottola G (2018) Enhanced nitrogen removal and energy saving in a microalgal–bacterial consortium treating real municipal wastewater. Water Sci Technol 78:174–182. https://doi.org/10.2166/wst.2018.094

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ryu B-G, Kim J, Han J-I, Yang J-W (2017) Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresour Technol 225:58–66. https://doi.org/10.1016/j.biortech.2016.11.029

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Mujtaba G, Rizwan M, Lee K (2017) Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J Ind Eng Chem 49:145–151. https://doi.org/10.1016/j.jiec.2017.01.021

    CAS  Article  Google Scholar 

  19. 19.

    Ferro L, Gojkovic Z, Muñoz R, Funk C (2019) Growth performance and nutrient removal of a Chlorella vulgaris-Rhizobium sp. co-culture during mixotrophic feed-batch cultivation in synthetic wastewater. Algal Res 44:101690. https://doi.org/10.1016/j.algal.2019.101690

    Article  Google Scholar 

  20. 20.

    Marazzi F, Bellucci M, Fantasia T, Ficara E, Mezzanotte V (2020) Interactions between microalgae and bacteria in the treatment of wastewater from milk whey processing. Water 12:297. https://doi.org/10.3390/w12010297

    CAS  Article  Google Scholar 

  21. 21.

    Fan J, Chen Y, Zhang TC, Ji B, Cao L (2020) Performance of Chlorella sorokiniana-activated sludge consortium treating wastewater under light-limited heterotrophic condition. Chem Eng J 382:122799. https://doi.org/10.1016/j.cej.2019.122799

    CAS  Article  Google Scholar 

  22. 22.

    Huo S, Kong M, Zhu F, Qian J, Huang D, Chen P, Ruan R (2020) Co-culture of Chlorella and wastewater-borne bacteria in vinegar production wastewater: enhancement of nutrients removal and influence of algal biomass generation. Algal Res 45:101744. https://doi.org/10.1016/j.algal.2019.101744

    Article  Google Scholar 

  23. 23.

    Lin C, Cao P, Xu X, Ye B (2019) Algal-bacterial symbiosis system treating high-load printing and dyeing wastewater in continuous-flow reactors under natural light. Water 11:469. https://doi.org/10.3390/w11030469

    CAS  Article  Google Scholar 

  24. 24.

    Meng F, Xi L, Liu D, Huang W, Lei Z, Zhang Z, Huang W (2019) Effects of light intensity on oxygen distribution, lipid production and biological community of algal-bacterial granules in photo-sequencing batch reactors. Bioresour Technol 272:473–481. https://doi.org/10.1016/j.biortech.2018.10.059

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Khoo KS, Chew KW, Yew GY, Leong WH, Chai YH, Show PL, Chen W-H (2020) Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour Technol 304:122996. https://doi.org/10.1016/j.biortech.2020.122996

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Cole AJ, Paul NA, De Nys R, Roberts DA (2017) Good for sewage treatment and good for agriculture: algal based compost and biochar. J Environ Manage 200:105–113. https://doi.org/10.1016/j.jenvman.2017.05.082

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lakatos G, Deák Z, Vass I, Rétfalvi T, Rozgonyi S, Rákhely G, Ördög V, Kondorosi É, Maróti G (2014) Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem 16:4716–4727

    CAS  Article  Google Scholar 

  29. 29.

    Wirth R, Lakatos G, Maróti G, Bagi Z, Minárovics J, Nagy K, Kondorosi É, Rákhely G, Kovács KL (2015) Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process. Biotechnol Biofuels 8:1–14. https://doi.org/10.1186/s13068-015-0243-x

    CAS  Article  Google Scholar 

  30. 30.

    Liu L, Hong Y, Ye X, Wei L, Liao J, Huang X, Liu C (2018) Biodiesel production from microbial granules in sequencing batch reactor. Bioresour Technol 249:908–915. https://doi.org/10.1016/j.biortech.2017.10.105

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Arcila JS, Buitrón G (2016) Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. J Chem Technol Biotechnol 91:2862–2870. https://doi.org/10.1002/jctb.4901

    CAS  Article  Google Scholar 

  32. 32.

    Van Den Hende S, Laurent C, Bégué M (2015) Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: need for a biorefinery. Bioresour Technol 196:184–193. https://doi.org/10.1016/j.biortech.2015.07.058

    CAS  Article  Google Scholar 

  33. 33.

    Wieczorek N, Kucuker MA, Kuchta K (2015) Microalgae-bacteria flocs (MaB-Flocs) as a substrate for fermentative biogas production. Bioresour Technol 194:130–136. https://doi.org/10.1016/j.biortech.2015.06.104

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hernández D, Riaño B, Coca M, García-González M (2013) Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol 135:598–603. https://doi.org/10.1016/j.biortech.2012.09.029

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Tang DYY, Khoo KS, Chew KW, Tao Y, Ho S-H, Show PL (2020) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997. https://doi.org/10.1016/j.biortech.2020.122997

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hwangbo M, Chu K-H (2020) Recent advances in production and extraction of bacterial lipids for biofuel production. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139420

    Article  PubMed  Google Scholar 

  38. 38.

    Fradinho J, Domingos J, Carvalho G, Oehmen A, Reis M (2013) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153. https://doi.org/10.1016/j.biortech.2013.01.050

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MA (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55. https://doi.org/10.3390/bioengineering4020055

    CAS  Article  PubMed Central  Google Scholar 

  40. 40.

    Show PL, Tang MS, Nagarajan D, Ling TC, Ooi C-W, Chang J-S (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215. https://doi.org/10.3390/ijms18010215

    CAS  Article  PubMed Central  Google Scholar 

  41. 41.

    Xu X, Gu X, Wang Z, Shatner W, Wang Z (2019) Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew Sust Energ Rev 110:65–82. https://doi.org/10.1016/j.rser.2019.04.050

    CAS  Article  Google Scholar 

  42. 42.

    Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907. https://doi.org/10.1016/j.biotechadv.2011.07.009

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Yang B, Liu J, Ma X, Guo B, Liu B, Wu T, Jiang Y, Chen F (2017) Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO 2 fixation in microalgae. Biotechnol Biofuels 10:1–13. https://doi.org/10.1186/s13068-017-0916-8

    CAS  Article  Google Scholar 

  44. 44.

    Moore ER, Davie-Martin CL, Giovannoni SJ, Halsey KH (2020) Pelagibacter metabolism of diatom-derived volatile organic compounds imposes an energetic tax on photosynthetic carbon fixation. Environ Microbiol 22:1720–1733. https://doi.org/10.1111/1462-2920.14861

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Gao S, Hu C, Sun S, Xu J, Zhao Y, Zhang H (2018) Performance of piggery wastewater treatment and biogas upgrading by three microalgal cultivation technologies under different initial COD concentration. Energy 165:360–369. https://doi.org/10.1016/j.energy.2018.09.190

    CAS  Article  Google Scholar 

  46. 46.

    Anbalagan A, Toledo-Cervantes A, Posadas E, Rojo EM, Lebrero R, González-Sánchez A, Nehrenheim E, Muñoz R (2017) Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment: evaluation of tubular algal-bacterial photobioreactor. J CO2 Util 21:353–359. https://doi.org/10.1016/j.jcou.2017.07.016

    CAS  Article  Google Scholar 

  47. 47.

    Yadav G, Sharma I, Ghangrekar M, Sen R (2020) A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell. J Power Sources 449:227560. https://doi.org/10.1016/j.jpowsour.2019.227560

    CAS  Article  Google Scholar 

  48. 48.

    Sepehri A, Sarrafzadeh M-H, Avateffazeli M (2020) Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. J Clean Prod 247:119164. https://doi.org/10.1016/j.jclepro.2019.119164

    CAS  Article  Google Scholar 

  49. 49.

    Wang Y, Wang S, Sun L, Sun Z, Li D (2020) Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Res 47:101840. https://doi.org/10.1016/j.algal.2020.101840

    Article  Google Scholar 

  50. 50.

    Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PN, Tay JH (2020) Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renew Sust Energ Rev 118:109563. https://doi.org/10.1016/j.rser.2019.109563

    Article  Google Scholar 

Download references


This work was supported by the Fundamental Research Grant Scheme, Malaysia [FRGS/1/2019/STG05/UNIM/02/2] and MyPAIR-PHC-Hibiscus Grant [MyPAIR/1/2020/STG05/UNIM/1].

Author information



Corresponding author

Correspondence to Pau Loke Show.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khoo, K.S., Chia, W.Y., Chew, K.W. et al. Microalgal-Bacterial Consortia as Future Prospect in Wastewater Bioremediation, Environmental Management and Bioenergy Production. Indian J Microbiol (2021). https://doi.org/10.1007/s12088-021-00924-8

Download citation


  • Microalgal-bacteria consortium
  • Bioenergy
  • Environmental management
  • Wastewater bioremediation
  • Bioeconomy