Abstract
In the recent years, microalgae have captured researchers’ attention as the alternative feedstock for various bioenergy production such as biodiesel, biohydrogen, and bioethanol. Cultivating microalgae in wastewaters to simultaneously bioremediate the nutrient-rich wastewater and maintain a high biomass yield is a more economical and environmentally friendly approach. The incorporation of algal–bacterial interaction reveals the mutual relationship of microorganisms where algae are primary producers of organic compounds from CO2, and heterotrophic bacteria are secondary consumers decomposing the organic compounds produced from algae. This review would provide an insight on the challenges and future development of algal–bacterial consortium and its contribution in promoting a sustainable route to greener industry. It is believed that microalgal-bacterial consortia will be implemented in the near-future for sub-sequential treatment of wastewater bioremediation, bioenergy production and CO2 fixation, promoting sustainability and making extraordinary advancement in life sciences sectors.
This is a preview of subscription content, access via your institution.

References
- 1.
Leong WH, Zaine SNA, Ho YC, Uemura Y, Lam MK, Khoo KS, Kiatkittipong W, Cheng CK, Show PL, Lim JW (2019) Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. J Environ Manag 249:109384. https://doi.org/10.1016/j.jenvman.2019.109384
- 2.
Rashid N, Rehman MSU, Sadiq M, Mahmood T, Han J-I (2014) Current status, issues and developments in microalgae derived biodiesel production. Renew Sust Energy Rev 40:760–778. https://doi.org/10.1016/j.rser.2014.07.104
- 3.
Rosli SS, Kadir WNA, Wong CY, Han FY, Lim JW, Lam MK, Yusup S, Kiatkittipong W, Kiatkittipong K, Usman A (2020) Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation. Renew Sust Energ Rev 134:110306. https://doi.org/10.1016/j.rser.2020.110306
- 4.
Nitsos C, Filali R, Taidi B, Lemaire J (2020) Current and novel approaches to downstream processing of microalgae: a review. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2020.107650
- 5.
Arita CEQ, Peebles C, Bradley TH (2015) Scalability of combining microalgae-based biofuels with wastewater facilities: a review. Algal Res 9:160–169. https://doi.org/10.1016/j.algal.2015.03.001
- 6.
Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (2018) Nanotechnology, food security and water treatment, vol 11. Springer, Berlin
- 7.
Kouzuma A, Watanabe K (2015) Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol 33:125–129. https://doi.org/10.1016/j.copbio.2015.02.007
- 8.
Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A (2019) Microalgae–bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol 126:359–368. https://doi.org/10.1111/jam.14095
- 9.
Shah MP, Rodriguez-Couto S (2019) Microbial wastewater treatment. Elsevier, Amsterdam
- 10.
Ramanan R, Kim B-H, Cho D-H, Oh H-M, Kim H-S (2016) Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003
- 11.
Mahdavi H, Prasad V, Liu Y, Ulrich AC (2015) In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae–bacteria consortium. Bioresour Technol 187:97–105. https://doi.org/10.1016/j.biortech.2015.03.091
- 12.
Ahmad A, Buang A, Bhat A (2016) Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): a review. Renew Sust Energ Rev 65:214–234. https://doi.org/10.1016/j.rser.2016.06.084
- 13.
Molinuevo-Salces B, Riaño B, Hernández D, García-González MC (2019) Microalgae and wastewater treatment: advantages and disadvantages. In: Microalgae biotechnology for development of biofuel and wastewater treatment. Springer, Berlin, pp 505–533
- 14.
Chang J-S, Show P-L, Ling T-C, Chen C-Y, Ho S-H, Tan C-H, Nagarajan D, Phong W-N (2017) Photobioreactors. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 313–352. https://doi.org/10.1016/B978-0-444-63663-8.00011-2
- 15.
Ji X, Li H, Zhang J, Saiyin H, Zheng Z (2019) The collaborative effect of Chlorella vulgaris-Bacillus licheniformis consortia on the treatment of municipal water. J Hazard Mater 365:483–493. https://doi.org/10.1016/j.jhazmat.2018.11.039
- 16.
Foladori P, Petrini S, Nessenzia M, Andreottola G (2018) Enhanced nitrogen removal and energy saving in a microalgal–bacterial consortium treating real municipal wastewater. Water Sci Technol 78:174–182. https://doi.org/10.2166/wst.2018.094
- 17.
Ryu B-G, Kim J, Han J-I, Yang J-W (2017) Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresour Technol 225:58–66. https://doi.org/10.1016/j.biortech.2016.11.029
- 18.
Mujtaba G, Rizwan M, Lee K (2017) Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J Ind Eng Chem 49:145–151. https://doi.org/10.1016/j.jiec.2017.01.021
- 19.
Ferro L, Gojkovic Z, Muñoz R, Funk C (2019) Growth performance and nutrient removal of a Chlorella vulgaris-Rhizobium sp. co-culture during mixotrophic feed-batch cultivation in synthetic wastewater. Algal Res 44:101690. https://doi.org/10.1016/j.algal.2019.101690
- 20.
Marazzi F, Bellucci M, Fantasia T, Ficara E, Mezzanotte V (2020) Interactions between microalgae and bacteria in the treatment of wastewater from milk whey processing. Water 12:297. https://doi.org/10.3390/w12010297
- 21.
Fan J, Chen Y, Zhang TC, Ji B, Cao L (2020) Performance of Chlorella sorokiniana-activated sludge consortium treating wastewater under light-limited heterotrophic condition. Chem Eng J 382:122799. https://doi.org/10.1016/j.cej.2019.122799
- 22.
Huo S, Kong M, Zhu F, Qian J, Huang D, Chen P, Ruan R (2020) Co-culture of Chlorella and wastewater-borne bacteria in vinegar production wastewater: enhancement of nutrients removal and influence of algal biomass generation. Algal Res 45:101744. https://doi.org/10.1016/j.algal.2019.101744
- 23.
Lin C, Cao P, Xu X, Ye B (2019) Algal-bacterial symbiosis system treating high-load printing and dyeing wastewater in continuous-flow reactors under natural light. Water 11:469. https://doi.org/10.3390/w11030469
- 24.
Meng F, Xi L, Liu D, Huang W, Lei Z, Zhang Z, Huang W (2019) Effects of light intensity on oxygen distribution, lipid production and biological community of algal-bacterial granules in photo-sequencing batch reactors. Bioresour Technol 272:473–481. https://doi.org/10.1016/j.biortech.2018.10.059
- 25.
Khoo KS, Chew KW, Yew GY, Leong WH, Chai YH, Show PL, Chen W-H (2020) Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour Technol 304:122996. https://doi.org/10.1016/j.biortech.2020.122996
- 26.
Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D-J, Chang J-S (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006
- 27.
Cole AJ, Paul NA, De Nys R, Roberts DA (2017) Good for sewage treatment and good for agriculture: algal based compost and biochar. J Environ Manage 200:105–113. https://doi.org/10.1016/j.jenvman.2017.05.082
- 28.
Lakatos G, Deák Z, Vass I, Rétfalvi T, Rozgonyi S, Rákhely G, Ördög V, Kondorosi É, Maróti G (2014) Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem 16:4716–4727
- 29.
Wirth R, Lakatos G, Maróti G, Bagi Z, Minárovics J, Nagy K, Kondorosi É, Rákhely G, Kovács KL (2015) Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process. Biotechnol Biofuels 8:1–14. https://doi.org/10.1186/s13068-015-0243-x
- 30.
Liu L, Hong Y, Ye X, Wei L, Liao J, Huang X, Liu C (2018) Biodiesel production from microbial granules in sequencing batch reactor. Bioresour Technol 249:908–915. https://doi.org/10.1016/j.biortech.2017.10.105
- 31.
Arcila JS, Buitrón G (2016) Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. J Chem Technol Biotechnol 91:2862–2870. https://doi.org/10.1002/jctb.4901
- 32.
Van Den Hende S, Laurent C, Bégué M (2015) Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: need for a biorefinery. Bioresour Technol 196:184–193. https://doi.org/10.1016/j.biortech.2015.07.058
- 33.
Wieczorek N, Kucuker MA, Kuchta K (2015) Microalgae-bacteria flocs (MaB-Flocs) as a substrate for fermentative biogas production. Bioresour Technol 194:130–136. https://doi.org/10.1016/j.biortech.2015.06.104
- 34.
Hernández D, Riaño B, Coca M, García-González M (2013) Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol 135:598–603. https://doi.org/10.1016/j.biortech.2012.09.029
- 35.
Tang DYY, Khoo KS, Chew KW, Tao Y, Ho S-H, Show PL (2020) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997. https://doi.org/10.1016/j.biortech.2020.122997
- 36.
Verlinden RA, Hill DJ, Kenward M, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x
- 37.
Hwangbo M, Chu K-H (2020) Recent advances in production and extraction of bacterial lipids for biofuel production. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139420
- 38.
Fradinho J, Domingos J, Carvalho G, Oehmen A, Reis M (2013) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153. https://doi.org/10.1016/j.biortech.2013.01.050
- 39.
Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MA (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55. https://doi.org/10.3390/bioengineering4020055
- 40.
Show PL, Tang MS, Nagarajan D, Ling TC, Ooi C-W, Chang J-S (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215. https://doi.org/10.3390/ijms18010215
- 41.
Xu X, Gu X, Wang Z, Shatner W, Wang Z (2019) Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew Sust Energ Rev 110:65–82. https://doi.org/10.1016/j.rser.2019.04.050
- 42.
Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907. https://doi.org/10.1016/j.biotechadv.2011.07.009
- 43.
Yang B, Liu J, Ma X, Guo B, Liu B, Wu T, Jiang Y, Chen F (2017) Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO 2 fixation in microalgae. Biotechnol Biofuels 10:1–13. https://doi.org/10.1186/s13068-017-0916-8
- 44.
Moore ER, Davie-Martin CL, Giovannoni SJ, Halsey KH (2020) Pelagibacter metabolism of diatom-derived volatile organic compounds imposes an energetic tax on photosynthetic carbon fixation. Environ Microbiol 22:1720–1733. https://doi.org/10.1111/1462-2920.14861
- 45.
Gao S, Hu C, Sun S, Xu J, Zhao Y, Zhang H (2018) Performance of piggery wastewater treatment and biogas upgrading by three microalgal cultivation technologies under different initial COD concentration. Energy 165:360–369. https://doi.org/10.1016/j.energy.2018.09.190
- 46.
Anbalagan A, Toledo-Cervantes A, Posadas E, Rojo EM, Lebrero R, González-Sánchez A, Nehrenheim E, Muñoz R (2017) Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment: evaluation of tubular algal-bacterial photobioreactor. J CO2 Util 21:353–359. https://doi.org/10.1016/j.jcou.2017.07.016
- 47.
Yadav G, Sharma I, Ghangrekar M, Sen R (2020) A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell. J Power Sources 449:227560. https://doi.org/10.1016/j.jpowsour.2019.227560
- 48.
Sepehri A, Sarrafzadeh M-H, Avateffazeli M (2020) Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. J Clean Prod 247:119164. https://doi.org/10.1016/j.jclepro.2019.119164
- 49.
Wang Y, Wang S, Sun L, Sun Z, Li D (2020) Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Res 47:101840. https://doi.org/10.1016/j.algal.2020.101840
- 50.
Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PN, Tay JH (2020) Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renew Sust Energ Rev 118:109563. https://doi.org/10.1016/j.rser.2019.109563
Acknowledgements
This work was supported by the Fundamental Research Grant Scheme, Malaysia [FRGS/1/2019/STG05/UNIM/02/2] and MyPAIR-PHC-Hibiscus Grant [MyPAIR/1/2020/STG05/UNIM/1].
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khoo, K.S., Chia, W.Y., Chew, K.W. et al. Microalgal-Bacterial Consortia as Future Prospect in Wastewater Bioremediation, Environmental Management and Bioenergy Production. Indian J Microbiol (2021). https://doi.org/10.1007/s12088-021-00924-8
Received:
Accepted:
Published:
Keywords
- Microalgal-bacteria consortium
- Bioenergy
- Environmental management
- Wastewater bioremediation
- Bioeconomy