Concrete Crack Restoration Using Bacterially Induced Calcium Metabolism

Abstract

Concrete structures are prone to develop cracks and cause devastation. Repair and renovation are not enough to ensure complete eradication of crack development. The entire process is costly and laborious. The microbiologically induced calcium carbonated precipitation can be effective in restoring the cracks. The calcium-based nutrients along with specific bacterial strain have been used in the present investigation. The pellets of calcium as per Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy are deposited in the cracks of the concrete over a period of 7 days of incubation. The presence of bacteria in the calcium precipitates as demonstrated by scanning electron microscope provides adequate strength and adhering quality to the pellets. The effective filling of cracks is confirmed with the help ultrasonic pulse velocity test also. Since, elephantine heritage and high sky buildings have high maintenance costs, the use of present technique will cut down the cost and duration of restoration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of Data and Materials

Yes.

References

  1. 1.

    Gagg CR (2014) Cement and concrete as an engineering material: an historic appraisal and case study analysis. Eng Fail Anal 40:114–140. https://doi.org/10.1016/j.engfailanal.2014.02.004

    Article  Google Scholar 

  2. 2.

    Apostolopoulos CA, Koulouris KF, Apostolopoulos AC (2019) Correlation of surface cracks of concrete due to corrosion and bond strength (between steel bar and concrete). Adv Civ Eng 2019:3438743. https://doi.org/10.1155/2019/3438743

    Article  Google Scholar 

  3. 3.

    Zhang S, Dong X, Zhang H, Deng M (2014) Research on deterioration mechanism of concrete materials in an actual structure. Adv Mater Sci Eng. https://doi.org/10.1155/2014/306459

    Article  Google Scholar 

  4. 4.

    Achal V, Mukherjee A, Reddy MS (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061

    Article  Google Scholar 

  5. 5.

    Patel SKS, Gupta RK, Das D, Lee J-K, Kalia VC (2020) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.125037

    Article  Google Scholar 

  6. 6.

    Griffin S, Askarinejad H, Farrant B (2017) Evaluation of epoxy injection method for concrete crack repair. Int J Struct Civ Eng Res 6:177–181. https://doi.org/10.18178/ijscer.6.3.177-181

    Article  Google Scholar 

  7. 7.

    Patel SKS, Gupta RK, Kim S-Y, Kim I-W, Kalia VC, Lee J-K (2020) Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol a degradation. Indian J Microbiol. https://doi.org/10.1007/s12088-020-00912-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Achal V, Mukherjee A, Reddy MS (2011) Microbial concrete: way to enhance the durability of building structures. J Mater Civ Eng 23:730–734. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000159

    CAS  Article  Google Scholar 

  9. 9.

    Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98:3–9. https://doi.org/10.14359/10154

    CAS  Article  Google Scholar 

  10. 10.

    Patel SKS, Gupta RK, Kumar V, Kondaveeti S, Kumar A, Das D, Kalia VC, Lee J-K (2020) Biomethanol production from methane by immobilized co-cultures of methanotrophs. Indian J Microbiol 60:318–324. https://doi.org/10.1007/s12088-020-00883-6

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Chen H, Qian C, Huang H (2016) Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Constr Build Mater 126:297–303. https://doi.org/10.1016/j.conbuildmat.2016.09.023

    CAS  Article  Google Scholar 

  12. 12.

    Zwaag S (2008) Self-healing materials: an alternative approach to 20 centuries of materials science, vol 30. Springer, Dordrecht

    Google Scholar 

  13. 13.

    Kumar P, Singh M, Mehariya S, Patel SK, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. https://doi.org/10.1007/s12088-014-0457-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kumar P, Patel SK, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Saxena R, Singh R (2014) Contemporaneous production of amylase and protease through CCD response surface methodology by newly isolated Bacillus megaterium strain B69. Enzyme Res 2014:601046. https://doi.org/10.1155/2014/601046

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Patel SKS, Jeon MS, Gupta RK, Jeon Y, Kalia VC, Kim SC, Cho B-K, Kim DR, Lee J-K (2019) Hierarchical macro-porous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977. https://doi.org/10.1021/acsami.9b03420

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Saxena R, Singh R (2011) Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp. Braz J Microbiol 42:1334–1342. https://doi.org/10.1590/S1517-83822011000400014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Patel SKS, Kim J-H, Kalia VC, Lee J-K (2019) Antimicrobial activity of amino-derivatized cationic polysaccharides. Indian J Microbiol 59:96–99. https://doi.org/10.1007/s12088-018-00764-7

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Anbu P, Kang CH, Shin YJ, So JS (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus 5:250. https://doi.org/10.1186/s40064-016-1869-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Patel SKS, Ray S, Prakash J, Wee JH, Kim S-Y, Lee J-K, Kalia VC (2019) Co-digestion of biowastes to enhance biological hydrogen process by defined mixed bacterial cultures. Indian J Microbiol 59:154–160. https://doi.org/10.1007/s12088-018-00777-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kim TS, Yoo JH, Kim SY, Pan CH, Kalia VC, Kang YC, Lee JK (2015) Screening and characterization of an Agrobacterium tumefaciens mutant strain producing high level of coenzyme Q10. Process Biochem 50:33–39. https://doi.org/10.1016/j.procbio.2014.10.024

    CAS  Article  Google Scholar 

  22. 22.

    Rodriguez-Navarro C, Elert K, Ševčík R (2016) Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation. Cryst Eng Commun 18:6594–6607. https://doi.org/10.1039/C6CE01202G

    CAS  Article  Google Scholar 

  23. 23.

    Prakash J, Sharma R, Patel SKS, Kim IW, Kalia VC (2018) Biohydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent. PLoS ONE 13:e0199059. https://doi.org/10.1371/journal.pone.0199059

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gupta S, Nigam A, Singh R (2015) Purification and characterization of a Bacillus subtilis keratinase and its prospective application in feed industry. Acta Biol Szeged 59:197–204

    Google Scholar 

  25. 25.

    Patel SKS, Kumar P, Singh S, Lee J-K, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. https://doi.org/10.1016/j.biortech.2014.11.029

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Achal V, Pan X, Özyurt N (2011) Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng 37:554–559. https://doi.org/10.1016/j.ecoleng.2010.11.009

    Article  Google Scholar 

  27. 27.

    Otari SV, Patel SKS, Kim S-Y, Haw JR, Kalia VC, Kim I-W, Lee J-K (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108. https://doi.org/10.1007/s12088-018-0768-3

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Sreedharan SM, Singh SP, Singh R (2019) Flower shaped gold nanoparticles: biogenic synthesis strategies and characterization. Indian J Microbiol 59:321–327. https://doi.org/10.1007/s12088-019-00804-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Otari SV, Patel SK, Kalia VC, Kim IW, Lee JK (2019) Antimicrobial activity of biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J Microbiol 59:379–382. https://doi.org/10.1007/s12088-019-00812-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Patel SK, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. https://doi.org/10.1007/s12088-011-0236-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. https://doi.org/10.1016/j.biortech.2015.01.138

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from ICAR funded extramural research project (AS/22/5/2018-ASR-IV).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajni Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitra, A., Sreedharan, S.M. & Singh, R. Concrete Crack Restoration Using Bacterially Induced Calcium Metabolism. Indian J Microbiol (2021). https://doi.org/10.1007/s12088-020-00916-0

Download citation

Keywords

  • Crack development
  • Restoration
  • Bacillus sp.
  • Calcium carbonate