Emerging Molecular Tools for Engineering Phytomicrobiome


Microbial plant interaction plays a major role in the sustainability of plants. The understanding of phytomicrobiome interactions enables the gene-editing tools for the construction of the microbial consortia. In this interaction, microbes share several common secondary metabolites and terpenoid metabolic pathways with their host plants that ensure a direct connection between the microbiome and associated plant metabolome. In this way, the CRISPR-mediated gene-editing tool provides an attractive approach to accomplish the creation of microbial consortia. On the other hand, the genetic manipulation of the host plant with the help of CRISPR-Cas9 can facilitate the characterization and identification of the genetic determinants. It leads to the enhancement of microbial capacity for more trait improvement. Many plant characteristics like phytovolatilization, phytoextraction, phytodesalination and phytodegradation are targeted by these approaches. Alternatively, chemical communications by PGPB are accomplished by the exchange of different signal molecules. For example, quorum-sensing is the way of the cell to cell communication in bacteria that lead to the detection of metabolites produced by pathogens during adverse conditions and also helpful in devising some tactics towards understanding plant immunity. Along with quorum-sensing, different volatile organic compounds and N-acyl homoserine lactones play a significant role in cell to cell communication by microbe to plant and among the plants respectively. Therefore, it is necessary to get details of all the significant approaches that are useful in exploring cell to cell communications. In this review, we have described gene-editing tools and the cell to cell communication process by quorum-sensing based signaling. These signaling processes via CRISPR- Cas9 mediated gene editing can improve the microbe-plant community in adverse climatic conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production for sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) New and future developments in microbial biotechnology and bioengineering, Elsevier, pp. 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

  2. 2.

    Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507. https://doi.org/10.3389/fpls.2015.00507

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kalia VC (2017) Microbial applications, biomedicine, agriculture and industry bioremediation & bioenergy. Springer. https://doi.org/10.1007/978-3-319-52669-0

  4. 4.

    Chaudhary T, Shukla P (2019) Bioinoculants for bioremediation applications and disease resistance: innovative perspectives. Indian J Microbiol 59:1–8. https://doi.org/10.1007/s12088-019-00783-4

    CAS  Article  Google Scholar 

  5. 5.

    Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166. https://doi.org/10.1007/s00253-018-9556-6

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Imam J, Singh PK, Shukla P (2016) Plant microbe interactions in post genomic era: perspectives and applications. Front Micro-biol 7:1488. https://doi.org/10.3389/fmicb.2016.01488

    Article  Google Scholar 

  7. 7.

    Imam J, Shukla P, Mandal P (2017) Microbial interactions in plants: perspectives and applications of proteomics. Curr Protein PeptSci 18:956–965. https://doi.org/10.2174/1389203718666161122103731

    CAS  Article  Google Scholar 

  8. 8.

    Kumar V, Baweja M, Singh PK, Shukla P (2016) Recent developments in systems biology and metabolic engineering of plant-microbe interactions. Front Plant Sci 7:1421. https://doi.org/10.3389/fpls.2016.01421

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet 16:85–97. https://doi.org/10.1038/nrg3868

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 1–15. https://doi.org/10.6064/2012/963401

  11. 11.

    Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Uroz S, Courty PE, Oger P (2019) Plant symbionts are engineers of the plant-associated microbiome. Trends plant sci. https://doi.org/10.1016/j.tplants.2019.06.008

  13. 13.

    Chaudhary T, Shukla P (2020) Commercial bioinoculant development: techniques and challenges. In: Shukla P (eds) Microbial enzymes and biotechniques. Springer, Singapore, pp 57–70https://doi.org/10.1007/978-981-15-6895-4_4

  14. 14.

    Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. PLANTA 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Trautman P, Crawford J (2016) Linking biosynthetic gene clusters to their metabolites via pathway-targeted molecular networking. Curr Top Med Chem 16:1705–1716. https://doi.org/10.2174/1568026616666151012111046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhou M, Luo H (2013) MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biology 83:59–75. https://doi.org/10.1007/s11103-013-0089-1

    CAS  Article  Google Scholar 

  18. 18.

    Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1–12. https://doi.org/10.1038/ncomms2542

    CAS  Article  Google Scholar 

  19. 19.

    Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:208. https://doi.org/10.3389/fpls.2015.00208

  20. 20.

    Su P, Zhao L, Li W, Zhao J, Yan J, Ma X, Li A, Wang H, Kong L (2020) Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. J Integr Plant Biol. https://doi.org/10.1111/jipb.12992

    Article  PubMed  Google Scholar 

  21. 21.

    Ali M, Javaid A, Naqvi SH, Batcho A, Kayani WK, Lal A, Sajid IA, Nwogwugwu JO (2020) Biotic stress triggered small RNA and RNAi defense response in plants. Mol Biol Rep 1–12. https://doi.org/10.1007/s11033-020-05583-4

  22. 22.

    Yer EN, Baloglu MC, Ayan S (2018) Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene 678:324–336. https://doi.org/10.1016/j.gene.2018.08.049

    CAS  Article  Google Scholar 

  23. 23.

    Ali Z, Abul-Faraj A, Li L, Ghosh N, Piatek M, Mahjoub A et al (2015) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8:1288–1291. https://doi.org/10.1016/j.molp.2015.02.011

    CAS  Article  Google Scholar 

  24. 24.

    Basu S, Rabara RC, Negi S, Shukla P (2018) Engineering PGPMOs through gene editing and systems biology: a solution for phytoremediation? Trends Biotechnol 36:499–510. https://doi.org/10.1016/j.tibtech.2018.01.01

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Gupta SK, Shukla P (2017) Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol 37:672–684. https://doi.org/10.1080/07388551.2016.1214557

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Chaudhary T, Shukla P (2019) Bioinoculant capability enhancement through metabolomics and systems biology approaches. Brief Funct Genom 18:159–168. https://doi.org/10.1093/bfgp/elz011

    CAS  Article  Google Scholar 

  27. 27.

    Zhou K, Qiao K, Edgar S, Stephanopoulos G (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33: 377. https://doi.org/10.1038/nbt.3095

  28. 28.

    Bernstein HC, Paulson SD, Carlson RP (2012) Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J Biotechnol 157:159–166. https://doi.org/10.1016/j.jbiotec.2011.10.001

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Macia J, Manzoni R, Conde N, Urrios A, de Nadal E, Sole R, Posas F (2016) Implementation of complex biological logic circuits using spatially distributed multicellular consortia. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1004685

  30. 30.

    Urrios A, Macia J, Manzoni R, Conde N, Bonforti A, de Nadal E, Posas F, Solee R (2016) A synthetic multicellular memory device. ACS Synth Biol 5:862–873. https://doi.org/10.1021/acssynbio.7b00463

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Zhang H, Pereira B, Li Z, Stephanopoulos G (2015) Engineering Escherichia coli coculture systems for the production of biochemical products. Proc Natl Acad Sci 112:8266–8271. https://doi.org/10.1073/pnas.1506781112

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Xiu Y, Jang S, Jones JA, Zill NA, Linhardt RJ, Yuan Q, Jung GY, Koffas MA (2017) Naringenin-responsive riboswitch‐based fluorescent biosensor module for Escherichia coli co‐cultures. Biotechnol Bioeng 114:2235–2244. https://doi.org/10.1002/bit.26340

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Meyer A, Pellaux R, Potot S, Becker K, Hohmann HP, Panke S, Held M (2015) Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat Chem 7:673. https://doi.org/10.1038/nchem.2301

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gilbert ES, Walker AW, Keasling JD (2003) A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Appl Microbiol Biotechnol 61:77–81. https://doi.org/10.1007/s00253-002-1203-5

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hong SH, Hegde M, Kim J, Wang X, Jayaraman A, Wood TK (2012) Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat Commun 3:1–8. https://doi.org/10.1038/ncomms1616

    CAS  Article  Google Scholar 

  36. 36.

    Kim HJ, Jeong H, Lee SJ (2018) Synthetic biology for microbial heavy metal biosensors. Anal Bioanal Chem 410:1191–1203. https://doi.org/10.1007/s00216-017-0751-6

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    El-Sayed AS, Abdel-Ghany SE, Ali GS (2017) Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl Microbiol101:3953–3976. https://doi.org/10.1007/s00253-017-8263-z

  38. 38.

    Andersen MM, Landes X, Xiang W, Anyshchenko A, Falhof J, Osterberg JT et al (2015) Feasibility of new breeding techniques for organic farming. Trends Plant Sci 20:426–434. https://doi.org/10.1016/j.tplants.2015.04.011

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381. https://doi.org/10.1007/s00425-008-0772-7

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. https://doi.org/10.3109/1040841X.2010.532479

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    He S, Guo L, Niu M, Miao F, Jiao S, Hu T, Long M (2017) Ecological diversity and co-occurrence patterns of bacterial community through soil profile in response to long-term switchgrass cultivation. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-03778-7

    CAS  Article  Google Scholar 

  42. 42.

    Umaru FF, Owuama CI (2018) Application of plant-microbe interactions in contaminated agroecosystem management. In: Kumar V, Kumar M, Prasad R (eds) Phytobiont and ecosystem restitution. Springer, Singapore, pp 63–100. https://doi.org/10.1007/978

  43. 43.

    Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. https://doi.org/10.1016/j.biotechadv.2012.10.004

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Kalia VC (2015) Microbes: the mostfriendly beings? In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer India, pp 1–5. https://doi.org/10.1007/978-81-322-1982-8_1

  45. 45.

    Park H, Lee K, Yeo S, Shin H, Holzapfel WH (2017) Autoinducer-2 quorum sensing influences viability of Escherichia coli O157: H7 under osmotic and in vitro gastrointestinal stress conditions. Front Microbiol 8:1077. https://doi.org/10.3389/fmicb.2017.01077

  46. 46.

    Mokkonen M, Lindstedt C (2016) The evolutionary ecology of deception. Biol Rev 91:1020–1035. https://doi.org/10.1111/brv.12208

    Article  PubMed  Google Scholar 

  47. 47.

    Yu K, Pieterse CM, Bakker PA, Berendsen RL (2019) Beneficial microbes going underground of root immunity. Plant Cell Environ 42:2860–2870. https://doi.org/10.1111/pce.13632

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Joshi N, Nautiyal P, Papnai G (2019) Unravelling diverse roles of strigolactones in stimulating plant growth and alleviating various stress conditions: a review. J Pharmacogn Phytochem 8:396–404. https://doi.org/10.3389/fpls.2016.00434. eCollection 2016

    Article  Google Scholar 

  49. 49.

    McKinley VL (2019) Effects of land use and restoration on soil microbial communities. In: Hurst C (ed) Understanding terrestrial microbial communities. Springer, Cham, pp 173–242. https://doi.org/10.1007/978-3-030-10777-2_7

    Google Scholar 

  50. 50.

    Mukherjee D (2019) Microbial interventions in soil and plant health for improving crop efficiency. In: Singh D, Prabha R (eds) Microbial interventions in agriculture and environment. Springer, Singapore pp 17-47. https://doi.org/10.1007/978-981-32-9084-6$4

  51. 51.

    Shelake RM, Pramanik D, Kim JY (2019) Exploration of plant-microbe interactions for sustainable agriculture in CRISPR era. Microorganisms 7:269. https://doi.org/10.3390/microorganisms7080269

    Article  PubMed Central  Google Scholar 

  52. 52.

    Marwein R, Debbarma J, Sarki YN, Baruah I, Saikia B, Boruah HPD, Velmurugan N, Chikkaputtaiah C (2019) Genetic engineering/Genome editing approaches to modulate signaling processes in abiotic stress tolerance. In: Maragioglio N (ed) Plant Signaling molecules. Woodhead Publishing, pp 63–82. https://doi.org/10.1016/B978-0-12-816451-8.00002-2

  53. 53.

    Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512. https://doi.org/10.1146/annurev-phyto-080417-050158

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Friesen ML, Friel CA (2019) Legumes modulate allocation to rhizobial nitrogen fixation in response to factorial light and nitrogen manipulation. Front Plant Sci 10:316. https://doi.org/10.3389/fpls.2019.01316

    Article  Google Scholar 

  55. 55.

    Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365. https://doi.org/10.1111/j.1365-2672.2007.03366.x

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Martinez-Camara R, Montejano-Ramirez V, Moreno-Hagelsieb G, Santoyo G, Valencia-Cantero E (2019) The volatile organic compound dimethylhexadecylamine affects bacterial growth and swarming motility of bacteria. Folia Microbiol 1–10.https://doi.org/10.1007/s12223-019-00756-6

  57. 57.

    Vaishnav A, Hansen AP, Agrawal PK, Varma A, Choudhary DK (2017) Biotechnological perspectives of legume–rhizobium symbiosis. In: Hansen A, Choudhary D, Agrawal P, Varma A (eds) Rhizobium biology and biotechnology. Soil biology, vol 50. Springer, Cham, pp 247–256

  58. 58.

    Whiteside MD, Werner GD, Caldas VE, van’tPadje A, Dupin SE, Elbers B, Bakker M, Wyatt GA, Klein M, Hink MA, Postma M (2019) Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr Biol 29:2043–2050. https://doi.org/10.1016/j.cub.2019.04.061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Fiorilli V, Wang JY, Bonfante P, Lanfranco L, Al-Babili S (2019) Apocarotenoids: old and new mediators of the arbuscular mycorrhizal symbiosis. Front Plant Sci 10:1186. https://doi.org/10.3389/fpls.2019.01186

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Rochange S, Goormachtig S, Lopez-Raez JA, Gutjahr C (2019) The role of strigolactones in plant–microbe interactions. In: Koltai H, Prandi C (eds) Strigolactones-biology and applications. Springer, Cham, pp 121–142

    Google Scholar 

  61. 61.

    Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280. https://doi.org/10.3389/fmicb.2015.01280

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Van’t Padje A, Whiteside MD, Kiers ET (2016) Signals and cues in the evolution of plant–microbe communication. Curr Opin Plant Biol 32:47–52. https://doi.org/10.1016/j.pbi.2016.06.006

    CAS  Article  Google Scholar 

  63. 63.

    Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb 3:001438. https://doi.org/10.1101/cshperspect.a001438

    CAS  Article  Google Scholar 

  64. 64.

    Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. PNAS 103:4658–4662. https://doi.org/10.1073/pnas.0600366103

  65. 65.

    Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgarisL.). Plant Soil 302:149–161. https://doi.org/10.1007/s11104-007-9462-7

    CAS  Article  Google Scholar 

  66. 66.

    Chagas FO, de Cassia Pessotti R, Caraballo-Rodriguez AM, Pupo MT (2018) Chemical signaling involved in plant–microbe interactions. Chem Soc Rev 47:1652–1704. https://doi.org/10.1039/c7cs00343a

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Seneviratne G, Weerasekara M, L M A W, Kumar esan D, Zavahir JS (2017) Microbial signaling in plant-microbe interactions and its role on sustainability of agroecosystems. In: Singh JK, Seneviratne G (eds) Agro-environmental sustainability, vol 1. Springer, Cham, pp 1–17. https://doi.org/10.1007/978-3-319-49724-2_1

  68. 68.

    Liu Z, Hong CJ, Yang Y, Dai L, Ho CL (2020) Advances in bacterial biofilm management for maintaining microbiome homeostasis. Biotechnol J 1900320. https://doi.org/10.1002/biot.201900320

  69. 69.

    Saha I, Datta S, Biswas D (2020) Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture. Curr Microbiol 1–16. https://doi.org/10.1007/s00284-020-02169-y

  70. 70.

    Tian L, Lin X, Tian J, Ji L, Chen Y, Tran LSP, Tian C (2020) Research advances of beneficial microbiota associated with crop plants. Int J Mol Sci 21:1792. https://doi.org/10.3390/ijms21051792

    CAS  Article  PubMed Central  Google Scholar 

  71. 71.

    Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25. https://doi.org/10.1099/mic.0.052274-0

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Atanasova L, Knox BP, Kubicek CP, Druzhinina IS, Baker SE (2013) The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. Eukaryot Cell 12:1499–1508. https://doi.org/10.1128/EC.00103-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


The author, TC acknowledges MaharshiDayanand University, Rohtak, India for University Research Scholarship (URS). PS acknowledges the Department of Science and Technology, New Delhi, Govt. of India, FIST grant (Grant No. 1196 SR/FST/LS-I/2017/4) and Department of Biotechnology, Government of India (Grant No. BT/PR27437/BCE/8/1433/2018).

Author information



Corresponding author

Correspondence to Pratyoosh Shukla1.

Ethics declarations

Conflict of interest

The authors don’t have any conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, T., Gera, R. & Shukla1, P. Emerging Molecular Tools for Engineering Phytomicrobiome. Indian J Microbiol (2021). https://doi.org/10.1007/s12088-020-00915-1

Download citation


  • Phytomicrobiome
  • Plant-microbe interactions
  • Quorum-sensing
  • Cell communication
  • Microbial community