Skip to main content

Advertisement

Log in

Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biofilm is a mode of living employed by many pathogenic and environmental microbes to proliferate as multicellular aggregates on inert inanimate or biological substrates. Several microbial diseases are associated with biofilms that pose challenges in treatment with antibiotics targeting individual cells. Bacteria in biofilms secrete exopolymeric substances that contribute to architectural stability and provide a secure niche to inhabiting cells. Quorum sensing (QS) plays essential roles in biofilm development. Pathogenic bacteria in biofilms utilize QS mechanisms to activate virulence and develop antibiotic resistance. This review is a brief overview of biofilm research and provides updates on recent understandings on biofilm development, antibiotic resistance and transmission, and importance of QS mechanisms. Strategies to combat biofilm associated diseases including anti-biofilm substances, quorum quenching molecules, bio-surfactants and competitive inhibitors are briefly discussed. The review concludes with updates on recent approaches utilized for biofilm inhibition and provides perspectives for further research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Algburi A, Comito N, Kashtanov D, Dicks LM, Chikindas ML (2016) Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02508-16

    Article  Google Scholar 

  2. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81:7–11. https://doi.org/10.1016/j.jcma.2017.07.012

    Article  PubMed  Google Scholar 

  3. Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1. https://doi.org/10.1038/ijos.2014.65

    Article  CAS  PubMed  Google Scholar 

  4. Miquel S, Lagrafeuille R, Souweine B, Forestier C (2016) Anti-biofilm activity as a health issue. Front Microbiol 7:592. https://doi.org/10.3389/fmicb.2016.00592

    Article  PubMed  PubMed Central  Google Scholar 

  5. Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6:1216. https://doi.org/10.3389/fmicb.2015.01216

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kanwar I, Sah AK, Suresh PK (2017) Biofilm-mediated antibiotic-resistant oral bacterial infections: mechanism and combat strategies. Curr Pharm Des 23:2084–2095. https://doi.org/10.2174/1381612822666161124154549

    Article  CAS  PubMed  Google Scholar 

  7. Hall CW, Mah T-F (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41:276–301. https://doi.org/10.1093/femsre/fux010

    Article  CAS  PubMed  Google Scholar 

  8. Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53. https://doi.org/10.2174/1874285801711010053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ (2015) How biofilms evade host defenses. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MB-0012-2014

    Article  PubMed  Google Scholar 

  10. Stalder T, Top E (2016) Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes 2:16022. https://doi.org/10.1038/npjbiofilms.2016.22

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kouzel N, Oldewurtel ER, Maier B (2015) Gene transfer efficiency in gonococcal biofilms: role of biofilm age, architecture, and pilin antigenic variation. J Bacteriol 197:2422–2431. https://doi.org/10.1128/JB.00171-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smolentseva O, Gusarov I, Gautier L, Shamovsky I, DeFrancesco AS, Losick R, Nudler E (2017) Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Sci Rep 7:7137. https://doi.org/10.1038/s41598-017-07222-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen XP, Ali L, Wu L-Y, Liu C, Gang CX, Huang QF, Ruan JH, Bao SY, Rao YP, Yu D (2018) Biofilm formation plays a role in the formation of multidrug-resistant Escherichia coli toward nutrients in microcosm experiments. Front Microbiol 9:367. https://doi.org/10.3389/fmicb.2018.00367

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. https://doi.org/10.1016/j.biotechadv.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  15. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306. https://doi.org/10.1101/cshperspect.a010306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

  17. Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE (2017) Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol. https://doi.org/10.1016/j.ijmm.2017.09.016

    Article  PubMed  Google Scholar 

  18. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C (2017) Critical review on biofilm methods. Crit Rev Microbiol 43:313–351. https://doi.org/10.1080/1040841X.2016.1208146

    Article  CAS  PubMed  Google Scholar 

  19. Satpathy S, Sen SK, Pattanaik S, Raut S (2016) Review on bacterial biofilm: an universal cause of contamination. Biocatal Agric Biotechnol 7:56–66. https://doi.org/10.1016/j.bcab.2016.05.002

    Article  Google Scholar 

  20. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol 198:1–15. https://doi.org/10.1007/s00203-015-1148-6

    Article  CAS  PubMed  Google Scholar 

  21. Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MB-0011-2014

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39:649–669. https://doi.org/10.1093/femsre/fuv015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith DR, Price JE, Burby PE, Blanco LP, Chamberlain J, Chapman MR (2017) The production of Curli amyloid fibers is deeply integrated into the biology of Escherichia coli. Biomolecules 7:75. https://doi.org/10.3390/biom7040075

    Article  CAS  PubMed Central  Google Scholar 

  24. Diehl A, Roske Y, Ball L, Chowdhury A, Hiller M, Molière N, Kramer R, Stöppler D, Worth CL, Schlegel B, Leidert M, Cremer N, Erdmann N, Lopez D, Stephanowitz H, Krause E, van Rossum BJ, Schmieder P, Heinemann U, Turgay K, Akbey Ü, Oschkinat H (2018) Structural changes of TasA in biofilm formation of Bacillus subtilis. Proc Natl Acad Sci USA 115:3237–3242. https://doi.org/10.1073/pnas.1718102115

    Article  CAS  PubMed  Google Scholar 

  25. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881. https://doi.org/10.3201/eid0809.020063

    Article  PubMed  PubMed Central  Google Scholar 

  26. Díaz-Salazar C, Calero P, Espinosa-Portero R, Jiménez-Fernández A, Wirebrand L, Velasco-Domínguez MG, López-Sánchez A, Shingler V, Govantes F (2017) The stringent response promotes biofilm dispersal in Pseudomonas putida. Sci Rep 7:18055. https://doi.org/10.1038/s41598-017-18518-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fleming D, Rumbaugh KP (2017) Approaches to dispersing medical biofilms. Microorganisms 5:15. https://doi.org/10.3390/microorganisms5020015

    Article  CAS  PubMed Central  Google Scholar 

  28. Zhao X, Zhao F, Wang J, Zhong N (2017) Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Adv 7:36670–36683. https://doi.org/10.1039/C7RA02497E

    Article  CAS  Google Scholar 

  29. Han Q, Song X, Zhang Z, Fu J, Wang X, Malakar PK, Liu H, Pan Y, Zhao Y (2017) Removal of foodborne pathogen biofilms by acidic electrolyzed water. Front Microbiol 8:988. https://doi.org/10.3389/fmicb.2017.00988

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 12:2519–2538. https://doi.org/10.3390/s120302519

    Article  CAS  Google Scholar 

  31. Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313. https://doi.org/10.1038/nature24624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Basavaraju M, Sisnity VS, Palaparthy R, Addanki PK (2016) Quorum quenching: signal jamming in dental plaque biofilms. J Dent Sci 11:349–352. https://doi.org/10.1016/j.jds.2016.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Voběrková S, Hermanová S, Hrubanová K, Krzyžánek V (2016) Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film. Folia Microbiol (Praha) 61:91–100. https://doi.org/10.1007/s12223-015-0406-y

    Article  CAS  Google Scholar 

  34. Inaba T, Hori T, Aizawa H, Ogata A, Habe H (2017) Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors. NPJ Biofilms Microbiomes 3:5. https://doi.org/10.1038/s41522-016-0010-1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kundukad B, Schussman M, Yang K, Seviour T, Yang L, Rice SA, Kjelleberg S, Doyle PS (2017) Mechanistic action of weak acid drugs on biofilms. Sci Rep 7:4783. https://doi.org/10.1038/s41598-017-05178-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao J, Hara AT, Kim D, Zero DT, Koo H, Hwang G (2017) Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface. Int J Oral Sci 9:74. https://doi.org/10.1038/ijos.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Leary D, McCabe EM, McCusker MP, Martins M, Fanning S, Duffy G (2015) Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104. Int J Food Microbiol 206:7–16. https://doi.org/10.1016/j.ijfoodmicro.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  38. Berlanga M, Guerrero R (2016) Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact 15:165. https://doi.org/10.1186/s12934-016-0569-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22:326–333. https://doi.org/10.1016/j.tim.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  40. Flemming H-C (2016) EPS—then and now. Microorganisms 4:41. https://doi.org/10.3390/microorganisms4040041

    Article  CAS  PubMed Central  Google Scholar 

  41. Høiby N (2017) A short history of microbial biofilms and biofilm infections. APMIS 125:272–275. https://doi.org/10.1111/apm.12686

    Article  PubMed  Google Scholar 

  42. Goltermann L, Tolker-Nielsen T (2017) Importance of the exopolysaccharide matrix in antimicrobial tolerance of Pseudomonas aeruginosa aggregates. Antimicrob Agents Chemother 61:e02696. https://doi.org/10.1128/AAC.02696-16

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Aldecoa ALI, Zafra O, González-Pastor JE (2017) Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol 8:1390. https://doi.org/10.3389/fmicb.2017.01390

    Article  Google Scholar 

  44. Das T, Sehar S, Manefield M (2013) The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep 5:778–786. https://doi.org/10.1111/1758-2229.12085

    Article  CAS  PubMed  Google Scholar 

  45. Jung C-J, Hsu R-B, Shun C-T, Hsu C-C, Chia J-S (2017) AtlA mediates extracellular DNA release, which contributes to Streptococcus mutans biofilm formation in an experimental rat model of infective endocarditis. Infect Immun 85:e00252. https://doi.org/10.1128/IAI.00252-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DeFrancesco AS, Masloboeva N, Syed AK, DeLoughery A, Bradshaw N, Li G-W, Gilmore MS, Walker S, Losick R (2017) Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc Natl Acad Sci USA 114:E5969–E5978. https://doi.org/10.1073/pnas.1704544114

    Article  CAS  PubMed  Google Scholar 

  47. Sena-Vélez M, Redondo C, Graham JH, Cubero J (2016) Presence of extracellular DNA during biofilm formation by Xanthomonas citri subsp. citri strains with different host range. PLoS ONE 11:e0156695. https://doi.org/10.1371/journal.pone.0156695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okshevsky M, Meyer RL (2015) The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol 41:341–352. https://doi.org/10.3109/1040841X.2013.841639

    Article  CAS  PubMed  Google Scholar 

  49. Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. https://doi.org/10.1007/s12088-015-0558-0

    Article  CAS  PubMed  Google Scholar 

  50. Kalia V (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol. https://doi.org/10.1007/s12088-013-0443-7

    Article  PubMed  PubMed Central  Google Scholar 

  51. Passos da Silva D, Schofield MC, Parsek MR, Tseng BS (2017) An update on the sociomicrobiology of quorum sensing in gram-negative biofilm development. Pathogens 6:51. https://doi.org/10.3390/pathogens6040051

    Article  CAS  PubMed Central  Google Scholar 

  52. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427. https://doi.org/10.1101/cshperspect.a012427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. https://doi.org/10.1007/s00248-013-0316-y

    Article  CAS  PubMed  Google Scholar 

  54. Madec E, Laszkiewicz A, Iwanicki A, Obuchowski M, Séror S (2002) Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes. Mol Microbiol 46:571–586. https://doi.org/10.1046/j.1365-2958.2002.03178.x

    Article  CAS  PubMed  Google Scholar 

  55. Arora G, Sajid A, Virmani R, Singhal A, Kumar CS, Dhasmana N, Khanna T, Maji A, Misra R, Molle V, Becher D, Gerth U, Mande SC, Singh Y (2017) Ser/Thr protein kinase PrkC-mediated regulation of GroEL is critical for biofilm formation in Bacillus anthracis. NPJ Biofilms Microbiomes 3:7. https://doi.org/10.1038/s41522-017-0015-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cluzel M-E, Zanella-Cléon I, Cozzone AJ, Fütterer K, Duclos B, Molle V (2010) The Staphylococcus aureus autoinducer-2 synthase LuxS is regulated by Ser/Thr phosphorylation. J Bacteriol 192:6295–6301. https://doi.org/10.1128/JB.00853-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9:522–554. https://doi.org/10.1080/21505594.2017.1313372

    Article  CAS  PubMed  Google Scholar 

  58. Abraham W-R (2016) Going beyond the control of quorum-sensing to combat biofilm infections. Antibiotics (Basel) 5:3. https://doi.org/10.3390/antibiotics5010003

    Article  CAS  Google Scholar 

  59. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. https://doi.org/10.3109/1040841X.2010.532479

    Article  CAS  PubMed  Google Scholar 

  60. Kumar P, Patel SK, Lee J-K, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  61. Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and-lactonase. Open Microbiol J 5:1. https://doi.org/10.2174/1874285801105010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koul S, Kalia VC (2017) Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population. Indian J Microbiol 57:100–108. https://doi.org/10.1007/s12088-016-0633-1

    Article  CAS  PubMed  Google Scholar 

  63. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju SC, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. https://doi.org/10.4014/jmb.1105.05056

    Article  CAS  PubMed  Google Scholar 

  64. Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D (2015) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116. https://doi.org/10.1093/femsre/fuv038

    Article  CAS  PubMed  Google Scholar 

  65. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Agents that inhibit bacterial biofilm formation. Future Med Chem 7:647–671. https://doi.org/10.4155/fmc.15.7

    Article  CAS  PubMed  Google Scholar 

  66. Kalia VC, Kumar P, Pandian ST, Sharma P (2015) Biofouling control by quorum quenching. In: Springer handbook of marine biotechnology. Springer, pp 431–440. https://doi.org/10.1007/978-81-322-1982

  67. Satheesh S, Ba-akdah MA, Al-Sofyani AA (2016) Natural antifouling compound production by microbes associated with marine macroorganisms: a review. Electron J Biotechnol 19:26–35. https://doi.org/10.1016/j.ejbt.2016.02.002

    Article  CAS  Google Scholar 

  68. Makwana M, Grover CR, Kumar N (2018) Biocides resistance profiles of biofilm forming bacteria of dairy niche and their control. Int J Curr Microbiol App Sci 7:1194–1205. https://doi.org/10.20546/ijcmas.2018.702.147

    Article  CAS  Google Scholar 

  69. Heindl JE, Wang Y, Heckel BC, Mohari B, Feirer N, Fuqua C (2014) Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front Plant Sci 5:176. https://doi.org/10.3389/fpls.2014.00176

    Article  PubMed  PubMed Central  Google Scholar 

  70. e Silva S, Carvalho J, Aires C, Nitschke M (2017) Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. J Dairy Sci 100:7864–7873. https://doi.org/10.3168/jds.2017-13012

    Article  CAS  PubMed  Google Scholar 

  71. De Rienzo MAD, Banat IM, Dolman B, Winterburn J, Martin PJ (2015) Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. N Biotechnol 32:720–726. https://doi.org/10.1016/j.nbt.2015.02.009

    Article  CAS  Google Scholar 

  72. Rendueles O, Ghigo J-M (2015) Mechanisms of competition in biofilm communities. Microbiol Spectr 3:1–18. https://doi.org/10.1128/microbiolspec.MB-0009-2014

    Article  Google Scholar 

  73. Tannières M, Lang J, Barnier C, Shykoff JA, Faure D (2017) Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders. Sci Rep 7:40126. https://doi.org/10.1038/srep40126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mu H, Tang J, Liu Q, Sun C, Wang T, Duan J (2016) Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci Rep 6:18877. https://doi.org/10.1038/srep18877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramasamy M, Lee J (2016) Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int 2016:1851242. https://doi.org/10.1155/2016/1851242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

PS gratefully acknowledges Innovative Young Biotechnologist Award (IYBA) of Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India and South Asian University (SAU) Startup Research Grant, SAU, India for providing funds and support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Saxena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, P., Joshi, Y., Rawat, K. et al. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms. Indian J Microbiol 59, 3–12 (2019). https://doi.org/10.1007/s12088-018-0757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0757-6

Keywords

Navigation