Effect of Homocysteine on Biofilm Formation by Mycobacteria

Original Research Article
  • 20 Downloads

Abstract

Mycobacteria show peculiar aggregated outgrowth like biofilm on the surface of solid or liquid media. Biofilms harbor antibiotic resistant bacteria in a self-produced extracellular matrix that signifies the bacterial fate to sedentary existence. Despite years of research, very little is known about the mechanisms that contribute to biofilm formation. LuxS has been previously known to play a role in biofilm formation in Autoinducer-2 dependent manner. We here show the effect of LuxS product-homocysteine, on the biofilm forming ability of non-tuberculous mycobacteria, Mycobacterium smegmatis and Mycobacterium bovis BCG showing AI-2 independent phenotypic effect of LuxS. Exogenous supplementation of homocysteine in the culture media leads to aberrant cording, pellicle outgrowth, and biofilm formation. Thus, our study contributes to the better understanding of the mechanism of mycobacterial biofilm formation and sheds light on the role of LuxS product homocysteine. In addition, we highlight the contribution of activated methyl cycle in bacterial quorum sensing.

Keywords

Homocysteine S-adenosyl methionine Biofilm Mycobacteria Methylation 

Abbreviations

SAM

S-adenosyl methionine

AI-2

Autoinducer-2

AMC

Activated methyl cycle

SAH

S-adenosyl homocysteine

SahH

S-adenosyl homocysteine hydrolase

NTM

Non-tuberculous mycobacteria

SRH

S-ribosyl homocysteine

Notes

Acknowledgements

We thank Anshika Singhal for her valuable suggestions in the experiments and the manuscript.

Author’s Contributions

RV conceived and designed the experiments. YH and YS contributed materials, reagents and analysis tools. All authors have read and approved the manuscript.

Funding

This work was supported by the Council of Scientific and Industrial Research (CSIR), India, J.C. Bose fellowship (SERB) (to Y.S.); and CSIR senior research fellowship (to R.V.).

Compliance with Ethical Standards

Competing interest

The authors declare that they have no competing interest.

References

  1. 1.
    Steinberg N, Kolodkin-Gal I (2015) The matrix reloaded: how sensing the extracellular matrix synchronizes bacterial communities. J Bacteriol 197:2092–2103.  https://doi.org/10.1128/JB.02516-14 CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Zambrano MM, Kolter R (2005) Mycobacterial biofilms: a greasy way to hold it together. Cell 123:762–764.  https://doi.org/10.1016/j.cell.2005.11.011 CrossRefPubMedGoogle Scholar
  3. 3.
    Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140.  https://doi.org/10.3109/1040841X.2010.532479 CrossRefPubMedGoogle Scholar
  4. 4.
    Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245.  https://doi.org/10.1016/j.biotechadv.2012.10.004 CrossRefPubMedGoogle Scholar
  5. 5.
    Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23.  https://doi.org/10.1007/s00248-013-0316-y CrossRefPubMedGoogle Scholar
  6. 6.
    Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE (2017) Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol 307:481–489.  https://doi.org/10.1016/j.ijmm.2017.09.016 CrossRefPubMedGoogle Scholar
  7. 7.
    Fernandes RA, Monteiro DR, Arias LS, Fernandes GL, Delbem ACB, Barbosa DB (2018) Virulence factors in Candida albicans and Streptococcus mutans biofilms mediated by farnesol. Indian J Microbiol 58:138–145.  https://doi.org/10.1007/s12088-018-0714-4 CrossRefPubMedGoogle Scholar
  8. 8.
    Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2.  https://doi.org/10.1007/s12088-013-0443-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Maji A, Misra R, Dhakan DB, Gupta V, Mahato NK, Saxena R, Mittal P, Thukral N, Sharma E, Singh A, Virmani R (2018) Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol 20:402–419.  https://doi.org/10.1111/1462-2920.14015 CrossRefPubMedGoogle Scholar
  10. 10.
    Faria S, Joao I, Jordao L (2015) General overview on nontuberculous mycobacteria, biofilms, and human infection. J Path 2015:809014.  https://doi.org/10.1155/2015/809014 Google Scholar
  11. 11.
    Sousa S, Bandeira M, Carvalho PA, Duarte A, Jordao L (2015) Nontuberculous mycobacteria pathogenesis and biofilm assembly. Int J Mycobacteriol 4:36–43.  https://doi.org/10.1016/j.ijmyco.2014.11.065 CrossRefPubMedGoogle Scholar
  12. 12.
    Esteban J, García-Coca M (2018) Mycobacterium Biofilms. Front Microbiol 8:2651.  https://doi.org/10.3389/fmicb.2017.02651 CrossRefPubMedGoogle Scholar
  13. 13.
    Obeid R (2013) The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients 5:3481–3495.  https://doi.org/10.3390/nu5093481 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Investigat 112:1291–1299.  https://doi.org/10.1172/JCI20195 CrossRefGoogle Scholar
  15. 15.
    Federle MJ (2009) Autoinducer-2-based chemical communication in bacteria: complexities of interspecies signaling. In: Collin M, Schuch R (eds) Bacterial sensing and signaling. Karger Publishers, Basel, pp 18–32.  https://doi.org/10.1159/000219371 CrossRefGoogle Scholar
  16. 16.
    Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MT, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P (2002) LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3 (2H)-furanone. Microbiol 148:909–922.  https://doi.org/10.1099/00221287-148-4-909 CrossRefGoogle Scholar
  17. 17.
    Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Making `sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3:383–396.  https://doi.org/10.1038/nrmicro1146 CrossRefPubMedGoogle Scholar
  18. 18.
    Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476.  https://doi.org/10.1046/j.1365-2958.2001.02532.x CrossRefPubMedGoogle Scholar
  19. 19.
    Singhal A, Arora G, Sajid A, Maji A, Bhat A, Virmani R, Upadhyay S, Nandicoori VK, Sengupta S, Singh Y (2013) Regulation of homocysteine metabolism by Mycobacterium tuberculosis S-adenosylhomocysteine hydrolase. Sci Rep 3:2264.  https://doi.org/10.1038/srep02264 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Walters M, Sircili MP, Sperandio V (2006) AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol 188:5668–5681.  https://doi.org/10.1128/JB.00648-06 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Singhal A, Arora G, Virmani R, Kundu P, Khanna T, Sajid A, Misra R, Joshi J, Yadav V, Samanta S, Saini N (2015) Systematic analysis of mycobacterial acylation reveals first example of acylation-mediated regulation of enzyme activity of a bacterial phosphatase. J Biol Chem 290:26218–26234.  https://doi.org/10.1074/jbc.M115.687269 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sajid A, Arora G, Gupta M, Singhal A, Chakraborty K, Nandicoori VK, Singh Y (2011) Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation. J Bacteriol 193:5347–5358.  https://doi.org/10.1128/JB.05469-11 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gupta M, Sajid A, Arora G, Tandon V, Singh Y (2009) Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J Biol Chem 284:34723–34734.  https://doi.org/10.1074/jbc.M109.058834 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Julián E, Roldán M, Sánchez-Chardi A, Astola O, Agustí G, Luquin M (2010) Microscopic cords, a virulence-related characteristic of Mycobacterium tuberculosis, are also present in nonpathogenic mycobacteria. J Bacteriol 192:1751–1760.  https://doi.org/10.1128/JB.01485-09 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sambandan D, Dao DN, Weinrick BC, Vilchèze C, Gurcha SS, Ojha A, Kremer L, Besra GS, Hatfull GF, Jacobs WR (2013) Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. MBio 4:e00222-13.  https://doi.org/10.1128/mBio.00222-13 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Arora G, Sajid A, Virmani R, Singhal A, Kumar CS, Dhasmana N, Khanna T, Maji A, Misra R, Molle V, Becher D (2017) Ser/Thr protein kinase PrkC-mediated regulation of GroEL is critical for biofilm formation in Bacillus anthracis. NPJ Biofilms Microbiomes 3:7.  https://doi.org/10.1038/s41522-017-0015-4 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kalsum S, Braian C, Koeken VA, Raffetseder J, Lindroth M, van Crevel R, Lerm M (2017) The cording phenotype of Mycobacterium tuberculosis induces the formation of extracellular traps in human macrophages. Front Cell Infect Microbiol 7:278.  https://doi.org/10.3389/fcimb.2017.00278 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Redanz S, Standar K, Podbielski A, Kreikemeyer B (2012) Heterologous expression of sahH reveals that biofilm formation is autoinducer-2-independent in Streptococcus sanguinis but is associated with an intact activated methionine cycle. J Biol Chem 287:36111–36122.  https://doi.org/10.1074/jbc.M112.379230 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kubica T, Agzamova R, Wright A, Rakishev G, Rüsch-Gerdes S, Niemann S (2006) Mycobacterium bovis isolates with M. tuberculosis specific characteristics. Emerg Infect Dis 12:763–765.  https://doi.org/10.3201/eid1205.050200 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Adetunji VO, Kehinde AO, Bolatito OK, Chen J (2014) Biofilm formation by Mycobacterium bovis: influence of surface kind and temperatures of sanitizer treatments on biofilm control. Biomed Res Int 2014:210165.  https://doi.org/10.1155/2014/210165 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Totani T, Nishiuchi Y, Tateishi Y, Yoshida Y, Kitanaka H, Niki M, Kaneko Y, Matsumoto S (2017) Effects of nutritional and ambient oxygen condition on biofilm formation in Mycobacterium avium subsp. hominissuis via altered glycolipid expression. Sci Rep 7:41775.  https://doi.org/10.1038/srep41775 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rossignol T, Ding C, Guida A, d’Enfert C, Higgins DG, Butler G (2009) Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot Cell 8:550–559.  https://doi.org/10.1128/EC.00350-08 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci 105:3963–3967.  https://doi.org/10.1073/pnas.0709530105 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ojha AK, Jacobs WR, Hatfull GF (2015) Genetic dissection of mycobacterial biofilms. In: Parish T, Roberts DM (eds) Mycobacteria protocols. Humana Press, New York, pp 215–226.  https://doi.org/10.1007/978-1-4939-2450-9_12 CrossRefGoogle Scholar
  35. 35.
    Yamazaki Y, Danelishvili L, Wu M, Hidaka E, Katsuyama T, Stang B, Petrofsky M, Bildfell R, Bermudez LE (2006) The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol 8:806–814.  https://doi.org/10.1111/j.1462-5822.2005.00667.x CrossRefPubMedGoogle Scholar
  36. 36.
    Marsollier L, Brodin P, Jackson M, Korduláková J, Tafelmeyer P, Carbonnelle E, Aubry J, Milon G, Legras P, Saint André JP, Leroy C (2007) Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 3:e62.  https://doi.org/10.1371/journal.ppat.0030062 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Arora G, Sajid A, Singhal A, Joshi J, Virmani R, Gupta M, Verma N, Maji A, Misra R, Baronian G, Pandey AK (2014) Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA. PLOS Negl Trop Dis 8:e3315.  https://doi.org/10.1371/journal.pntd.0003315 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Patterson JH, McConville MJ, Haites RE, Coppel RL, Billman-Jacobe H (2000) Identification of a methyltransferase from Mycobacterium smegmatis involved in glycopeptidolipid synthesis. J Biol Chem 275:24900–24906.  https://doi.org/10.1074/jbc.M000147200 CrossRefPubMedGoogle Scholar
  39. 39.
    Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873.  https://doi.org/10.1016/j.cell.2005.09.012 CrossRefPubMedGoogle Scholar
  40. 40.
    Dao DN, Sweeney K, Hsu T, Gurcha SS, Nascimento IP, Roshevsky D, Besra GS, Chan J, Porcelli SA, Jacobs WR Jr (2008) Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production. PLoS Pathog 4:e1000081.  https://doi.org/10.1371/journal.ppat.1000081 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jackson M, Brennan PJ (2009) Polymethylated polysaccharides from Mycobacterium species revisited. J Biol Chem 284:1949–1953.  https://doi.org/10.1074/jbc.R800047200 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stadthagen G, Sambou T, Guerin M, Barilone N, Boudou F, Korduláková J, Charles P, Alzari PM, Lemassu A, Daffé M, Puzo G (2007) Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 282:27270–27276.  https://doi.org/10.1074/jbc.M702676200 CrossRefPubMedGoogle Scholar
  43. 43.
    Schorey JS, Sweet L (2008) The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18:832–841.  https://doi.org/10.1093/glycob/cwn076 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Basavanna S, Chimalapati S, Maqbool A, Rubbo B, Yuste J, Wilson RJ, Hosie A, Ogunniyi AD, Paton JC, Thomas G, Brown JS (2013) The effects of methionine acquisition and synthesis on Streptococcus pneumoniae growth and virulence. PLoS ONE 8:e49638.  https://doi.org/10.1371/journal.pone.0049638 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Brambila-Tapia AJL, Poot-Hernández AC, Perez-Rueda E, Rodríguez-Vázquez K (2016) Identification of DNA methyltransferase genes in human pathogenic bacteria by comparative genomics. Indian J Microbiol 56:134–141.  https://doi.org/10.1007/s12088-015-0562-4 CrossRefPubMedGoogle Scholar
  46. 46.
    Barić I, Fumić K, Glenn B, Ćuk M, Schulze A, Finkelstein JD, James SJ, Mejaški-Bošnjak V, Pažanin L, Pogribny IP, Radoš M (2004) S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci 101:4234–4239.  https://doi.org/10.1073/pnas.0400658101 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mull L, Ebbs ML, Bender J (2006) A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. Genetics 174:1161–1171.  https://doi.org/10.1534/genetics.106.063974 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kalia VC (2014) In search of versatile organisms for quorum-sensing inhibitors: acyl homoserine lactones (AHL)-acylase and AHL-lactonase. FEMS Microbiol Lett 359:143.  https://doi.org/10.1111/1574-6968.12585 CrossRefPubMedGoogle Scholar

Copyright information

© Association of Microbiologists of India 2018

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of DelhiDelhiIndia
  2. 2.Delhi Technological UniversityDelhiIndia

Personalised recommendations