Skip to main content

Advertisement

Log in

Aloe Emodin Reduces Phthiodiolone Dimycocerosate Potentiating Vancomycin Susceptibility on Mycobacteria

  • Short Communications
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Treatment of tuberculosis still represent a major public health issue. The emergence of multi-and extensively-drug resistant (MDR and XDR) Mycobacterium tuberculosis clinical strains further pinpoint the urgent need for new anti-tuberculous drugs. We previously showed that vancomycin can target mycobacteria lacking cell wall integrity, especially those lacking related phthiocerol and phthiodolone dimycocerosates, PDIM A and PDIM B, respectively. As aloe emodin was previously hypothesized to be able to target the synthesis of mycobacterial cell wall lipids, we tested its ability to potentiate glycopeptides antimycobacterial activity. The aloe emodin with the vancomycin induced a combination effect beyond simple addition, close to synergism, at a concentration lower to reported IC50 cytotoxic value, on M. bovis BCG and on H37Rv M. tuberculosis. Interestingly, out of six MDR and pre-XDR clinical strains, one showed a strong synergic susceptibility to the drug combination. Mycobacterial cell wall lipid analyses highlighted a selective reduction of PDIM B by aloe emodin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Global tuberculosis report (2017) Geneva: World Health Organization; 2017. Licence: CC BY-NCSA3.0 IGO. http://apps.who.int/iris

  2. Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, Katoch VM, Chauhan SV (2010) Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res 131:809–813

    PubMed  Google Scholar 

  3. Tian B, Hua YJ, Ma XQ, Wang GL (2003) Relationship between antibacterial activity of aloe and its anthaquinone compounds. Zhongguo Zhong Yao Za Zhi 28:1034–1037

    PubMed  CAS  Google Scholar 

  4. Camacho–Corona M del R, Favela-Hernández JM de J, González–Santiago O, Garza–González E, Molina–Salinas GM, Said-Fernández S, Delgado G, Luna-Herrerae J (2009) Evaluation of some plant-derived secondary metabolites against sensitive and multidrug-resistant Mycobacterium tuberculosis. J Mex Chem Soc 53:71–75

    Google Scholar 

  5. Ramesh KV, Purohit M, Mekhala K, Krishnan M, Wagle K, Deshmukh S (2008) Modeling the interactions of herbal drugs to beta-ketoacyl ACP synthase of Mycobacterium tuberculosis H37Rv. J Biomol Struct Dyn 25:481–493. https://doi.org/10.1080/07391102.2008.10507195

    Article  PubMed  CAS  Google Scholar 

  6. Soetaert K, Rens C, Wang XM, De Bruyn J, Lanéelle MA, Laval F, Lemassu A, Daffé M, Bifani P, Fontaine V, Lefèvre P (2015) Increased vancomycin susceptibility in mycobacteria: a new approach to identify synergistic activity against multidrug-resistant mycobacteria. Antimicrob Agents Chemother 59:5057–5060. https://doi.org/10.1128/AAC.04856-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Daffé M, Crick D, Jackson M (2014) Genetics of capsular polysaccharides and cell envelope (glyco) lipids. Microbiol Spectrum 2: MGM2-0021-2013. https://doi.org/10.1128/microbiolspec.mgm2-0021-2013

  8. Rens C, Laval F, Daffé M, Denis O, Frita R, Baulard A, Wattiez R, Lefèvre P, Fontaine V (2016) Effects of lipid-lowering drugs on vancomycin susceptibility of mycobacteria. Antimicrob Agents Chemother 60:6193–6199. https://doi.org/10.1128/AAC.00872-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Simeone R, Huet G, Constant P, Malaga W, Lemassu A, Laval F, Daffé M, Guilhot C, Chalut C (2013) Functional characterization of three O-methyltransferases involved in the biosynthesis of phenolglycolipids in mycobacterium tuberculosis. PLoS ONE 8:e58954. https://doi.org/10.1371/journal.pone.0058954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cui XR, Tsukada M, Suzuki N, Shimamura T, Gao L, Koyanagi J, Komada F, Saito S (2008) Comparison of the cytotoxic activities of naturally occurring hydroxyanthraquinones and hydroxynaphthoquinones. Eur J Med Chem 43:1206–1215. https://doi.org/10.1016/j.ejmech.2007.08.009

    Article  PubMed  CAS  Google Scholar 

  11. Guo JM, Xiao BX, Liu Q, Zhang S, Liu DH, Gong ZH (2007) Anticancer effect of aloe-emodin on cervical cancer cells involves G2/M arrest and induction of differentiation. Acta Pharmacol Sin 28:1991–1995. https://doi.org/10.1111/j.1745-7254.2007.00707.x

    Article  PubMed  CAS  Google Scholar 

  12. Bunluepuech K, Sudsai T, Wattanapiromsakul C, Tewtrakul S (2011) Inhibition on HIV-1 integrase activity and nitric oxide production of compounds from Ficus glomerata. Nat Prod Commun 6:1095–1098

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Céline Rens was supported by “Les amis des Instituts Pasteurs à Bruxelles” asbl. We thank Pr. Caroline Stevigny for providing us the first aloe emodin pure product and Dong Yang for his help in the manuscript layout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Fontaine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rens, C., Ceyssens, PJ., Laval, F. et al. Aloe Emodin Reduces Phthiodiolone Dimycocerosate Potentiating Vancomycin Susceptibility on Mycobacteria. Indian J Microbiol 58, 393–396 (2018). https://doi.org/10.1007/s12088-018-0734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0734-0

Keywords

Navigation