Skip to main content
Log in

Molecular Cloning and Identification of the 2′–5′ Oligoadenylate Synthetase 2 Gene in Chinese Domestic Pigs Through Bioinformatics Analysis, and Determination of Its Antiviral Activity Against Porcine Reproductive and Respiratory Syndrome Virus Infection

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

An interferon-mediated antiviral protein, 2′–5′ oligoadenylate synthetase 2, plays an important role in the antiviral response of interferons. In this study, 2′–5′ oligoadenylate synthetase 2 genes were cloned from Chinese domestic pigs. Bioinformatics analysis revealed that the 2024-bp long open reading fame encodes 707 amino acids. There are two conserved regions in this protein: the nucleotidyltransferase domain, and the 2′–5′ oligoadenylate synthetase domain (OAS). Genetic evolution analysis showed that the 2′–5′ oligoadenylate synthetase 2 gene in domestic pigs is closely related to that of cattle. There are multiple antigenic sites, no signal peptide, and no transmembrane region in the gene, which is predicted to be a hydrophilic protein. Secondary structures were found to be mainly alpha helix-based; its tertiary structure is close to that of humans and cattle, but not that of mice. Tissue distribution results indicated that this protein is distributed in multiple organs, with high distribution in the liver; it is mainly localized in the cytoplasm. PRRSV infection, interferon-beta, and Poly(I: C) treatment all promoted 2′–5′ oligoadenylate synthetase 2 gene expression. Overexpression and RNA silencing of porcine OAS2 inhibited and promoted PRRSV replication in cells, respectively. The inhibitory effect of porcine OAS2 was mainly dependent on RNase L, similar to what was predicted. This study has laid the foundation for future antiviral studies in pig, and provided a new way of preventing and treating PRRSV in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485. https://doi.org/10.1038/nature09907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2015) Corrigendum: a diverse range of gene products are effectors of the type I interferon antiviral response. Nature 525:144. https://doi.org/10.1038/nature14554

    Article  CAS  PubMed  Google Scholar 

  3. Saunders ME, Gewert DR, Tugwell ME, McMahon M, Williams BR (1985) Human 2-5A synthetase: characterization of a novel cDNA and corresponding gene structure. EMBO J 4:1761–1768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Benech P, Mory Y, Revel M, Chebath J (1985) Structure of two forms of the interferon-induced (2′–5′) oligo A synthetase of human cells based on cDNAs and gene sequences. EMBO J 4:2249–2256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hovanessian AG, Kerr IM (1979) The (2′–5′) oligoadenylate (pppA2′–5′A2′–5′A) synthetase and protein kinase(s) from interferon-treated cells. Eur J Biochem FEBS 93:515–526

    Article  CAS  Google Scholar 

  6. Triozzi PL, Avery KB, Abou-Issa HM, Chou TC (1989) Combined effects of interferon and steroid hormones on 2′,5′-oligoadenylate synthetase activity in chronic lymphocytic leukemia cells. Leuk Res 13:437–443

    Article  PubMed  CAS  Google Scholar 

  7. Sokawa J, Sokawa Y (1986) (2′–5′) oligoadenylate synthetase in chicken embryo erythrocytes and immature red blood cells. J Biochem 99:119–124

    Article  PubMed  CAS  Google Scholar 

  8. Rachmilewitz D, Karmeli F, Panet A (1985) Interferon inhibits prostaglandin E2 synthesis and stimulates (2′–5′)oligoadenylate synthetase activity in peripheral blood mononuclear cells of inflammatory bowel disease patients. J Interferon Res 5:629–635

    Article  PubMed  CAS  Google Scholar 

  9. Lodemann E, Nitsche EM, Lang MH, Gerein V, Altmeyer P, Holzmann H, Kornhuber B (1985) Serum interferon level and (2–-5′)oligoadenylate synthetase activity in lymphocytes during clinical interferon application. J Interferon Res 5:621–628. https://doi.org/10.1089/jir.1985.5.621

    Article  PubMed  CAS  Google Scholar 

  10. Shimizu N, Sokawa Y (1983) (2′–5′)Oligoadenylate synthetase in pig spleen: isolation and characterization. J Biochem 94:1421–1428

    PubMed  CAS  Google Scholar 

  11. West DK, Ball LA (1982) Induction and maintenance of 2′,5′-oligoadenylate synthetase in interferon-treated chicken embryo cells. Mol Cell Biol 2:1436–1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Meurs E, Rougeot C, Svab J, Laurent AG, Hovanessian AG, Robert N, Gruest J, Montagnier L, Dray F (1982) Use of an anti-human leukocyte interferon monoclonal antibody for the purification and radioimmunoassay of human alpha interferon. Infect Immun 37:919–926

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Hartmann R, Olsen HS, Widder S, Jorgensen R, Justesen J (1998) p59OASL, a 2′–5′ oligoadenylate synthetase like protein: a novel human gene related to the 2′–5′ oligoadenylate synthetase family. Nucleic Acids Res 26:4121–4128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dong B, Silverman RH (1997) A bipartite model of 2-5A-dependent RNase L. J Biol Chem 272:22236–22242

    Article  PubMed  CAS  Google Scholar 

  15. Kumar S, Mitnik C, Valente G, Floyd-Smith G (2000) Expansion and molecular evolution of the interferon-induced 2′–5′ oligoadenylate synthetase gene family. Mol Biol Evol 17:738–750

    Article  PubMed  CAS  Google Scholar 

  16. Perelygin AA, Zharkikh AA, Scherbik SV, Brinton MA (2006) The mammalian 2′–5′ oligoadenylate synthetase gene family: evidence for concerted evolution of paralogous Oas1 genes in rodentia and artiodactyla. J Mol Evol 63:562–576. https://doi.org/10.1007/s00239-006-0073-3

    Article  PubMed  CAS  Google Scholar 

  17. Zhu J, Zhang Y, Ghosh A, Cuevas RA, Forero A, Dhar J, Ibsen MS, Schmid-Burgk JL, Schmidt T, Ganapathiraju MK, Fujita T, Hartmann R, Barik S, Hornung V, Coyne CB, Sarkar SN (2014) Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 40:936–948. https://doi.org/10.1016/j.immuni.2014.05.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Al-khatib K, Williams BR, Silverman RH, Halford W, Carr DJ (2003) The murine double-stranded RNA-dependent protein kinase PKR and the murine 2′,5′-oligoadenylate synthetase-dependent RNase L are required for IFN-beta-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology 313:126–135

    Article  PubMed  CAS  Google Scholar 

  19. Castelli JC, Hassel BA, Maran A, Paranjape J, Hewitt JA, Li XL, Hsu YT, Silverman RH, Youle RJ (1998) The role of 2′–5′ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ 5:313–320. https://doi.org/10.1038/sj.cdd.4400352

    Article  PubMed  CAS  Google Scholar 

  20. Cagliani R, Fumagalli M, Guerini FR, Riva S, Galimberti D, Comi GP, Agliardi C, Scarpini E, Pozzoli U, Forni D, Caputo D, Asselta R, Biasin M, Paraboschi EM, Bresolin N, Clerici M, Sironi M (2012) Identification of a new susceptibility variant for multiple sclerosis in OAS1 by population genetics analysis. Hum Genet 131:87–97. https://doi.org/10.1007/s00439-011-1053-2

    Article  PubMed  Google Scholar 

  21. Knapp S, Yee LJ, Frodsham AJ, Hennig BJ, Hellier S, Zhang L, Wright M, Chiaramonte M, Graves M, Thomas HC, Hill AV, Thursz MR (2003) Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection: roles of MxA, OAS-1 and PKR. Genes Immun 4:411–419. https://doi.org/10.1038/sj.gene.6363984

    Article  PubMed  CAS  Google Scholar 

  22. Bonnevie-Nielsen V, Field LL, Lu S, Zheng DJ, Li M, Martensen PM, Nielsen TB, Beck-Nielsen H, Lau YL, Pociot F (2005) Variation in antiviral 2′,5′-oligoadenylate synthetase (2′5′AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene. Am J Hum Genet 76:623–633. https://doi.org/10.1086/429391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hamano E, Hijikata M, Itoyama S, Quy T, Phi NC, Long HT, Ha LD, Ban VV, Matsushita I, Yanai H, Kirikae F, Kirikae T, Kuratsuji T, Sasazuki T, Keicho N (2005) Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population. Biochem Biophys Res Commun 329:1234–1239. https://doi.org/10.1016/j.bbrc.2005.02.101

    Article  PubMed  CAS  Google Scholar 

  24. Alagarasu K, Honap T, Damle IM, Mulay AP, Shah PS, Cecilia D (2013) Polymorphisms in the oligoadenylate synthetase gene cluster and its association with clinical outcomes of dengue virus infection. Infect Genet Evol 14:390–395. https://doi.org/10.1016/j.meegid.2012.12.021

    Article  PubMed  CAS  Google Scholar 

  25. Rios JJ, Fleming JG, Bryant UK, Carter CN, Huber JC, Long MT, Spencer TE, Adelson DL (2010) OAS1 polymorphisms are associated with susceptibility to West Nile encephalitis in horses. PLoS ONE 5:e10537. https://doi.org/10.1371/journal.pone.0010537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bautista EM, Meulenberg JJ, Choi CS, Molitor TW (1996) Structural polypeptides of the American (VR-2332) strain of porcine reproductive and respiratory syndrome virus. Adv Virol 141:1357–1365

    CAS  Google Scholar 

  27. Rossow KD, Collins JE, Goyal SM, Nelson EA, Christopher-Hennings J, Benfield DA (1995) Pathogenesis of porcine reproductive and respiratory syndrome virus infection in gnotobiotic pigs. Vet Pathol 32:361–373

    Article  PubMed  CAS  Google Scholar 

  28. Kim HS, Kwang J, Yoon IJ, Joo HS, Frey ML (1993) Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Adv Virol 133:477–483

    CAS  Google Scholar 

  29. Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson WT, Morrison RB, Gorcyca D, Chladek D (1992) Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest 4:127–133

    Article  PubMed  CAS  Google Scholar 

  30. den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC, Spaan WJ (1991) Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J Virol 65:2910–2920

    Google Scholar 

  31. Zhao M, Wang L, Li S (2017) Influenza A virus-host protein interactions control viral pathogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms18081673

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, Gao GF (2007) Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE 2:e526. https://doi.org/10.1371/journal.pone.0000526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhou L, Wang Z, Ding Y, Ge X, Guo X, Yang H (2015) NADC30-like strain of porcine reproductive and respiratory syndrome virus, China. Emerg Infect Dis 21:2256–2257. https://doi.org/10.3201/eid2112.150360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cavanagh D (1997) Nidovirales: a new order comprising coronaviridae and arteriviridae. Adv Virol 142:629–633

    CAS  Google Scholar 

  35. Li H, Chen X, Zhao M, Zhou E, Qiao S, Zhang G (2017) Analysis of related molecular changes of innate immune signaling pathway in porcine reproductive and respiratory syndrome virus infected PAMs. Acta Vet Zootech Sin 48:1288–1299

    Google Scholar 

  36. Zhao M, Ning Z, Wang H, Huang Z, Zhang M, Zhang G (2013) Sequence analysis of NSP9 gene of 25 PRRSV strains from Guangdong province, subtropical southern China. Virus Genes 46:88–96. https://doi.org/10.1007/s11262-012-0842-6

    Article  PubMed  CAS  Google Scholar 

  37. Zhao M, Wan B, Li H, He J, Chen X, Wang L, Wang Y, Xie S, Qiao S, Zhang G (2017) Porcine 2′,5′-oligoadenylate synthetase 2 inhibits porcine reproductive and respiratory syndrome virus replication in vitro. Microb Pathog 111:14–21. https://doi.org/10.1016/j.micpath.2017.08.011

    Article  PubMed  CAS  Google Scholar 

  38. Zhao M, Qian J, Xie J, Cui T, Feng S, Wang G, Wang R, Zhang G (2016) Characterization of polyclonal antibodies against nonstructural protein 9 from the porcine reproductive and respiratory syndrome virus. Front Agric Sci Eng 3:153–160. https://doi.org/10.15302/j-fase-2016097

    Article  Google Scholar 

  39. Yamamoto Y, Sono D, Sokawa Y (2000) Effects of specific mutations in active site motifs of 2′,5′-oligoadenylate synthetase on enzymatic activity. J Interf Cytokine Res 20:337–344. https://doi.org/10.1089/107999000312496

    Article  CAS  Google Scholar 

  40. Zheng S, Zhu D, Lian X, Liu W, Cao R, Chen P (2016) Porcine 2′,5′-oligoadenylate synthetases inhibit Japanese encephalitis virus replication in vitro. J Med Virol 88:760–768. https://doi.org/10.1002/jmv.24397

    Article  PubMed  CAS  Google Scholar 

  41. Naganuma A, Nozaki A, Tanaka T, Sugiyama K, Takagi H, Mori M, Shimotohno K, Kato N (2000) Activation of the interferon-inducible 2′–5′-oligoadenylate synthetase gene by hepatitis C virus core protein. J Virol 74:8744–8750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sanchez R, Mohr I (2007) Inhibition of cellular 2′–5′ oligoadenylate synthetase by the herpes simplex virus type 1 Us11 protein. J Virol 81:3455–3464. https://doi.org/10.1128/JVI.02520-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhao L, Jha Babal K, Wu A, Elliott R, Ziebuhr J, Gorbalenya Alexander E, Silverman Robert H, Weiss Susan R (2012) Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 11:607–616. https://doi.org/10.1016/j.chom.2012.04.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dhar J, Cuevas RA, Goswami R, Zhu J, Sarkar SN, Barik S (2015) 2′–5′-Oligoadenylate synthetase-like protein inhibits respiratory syncytial virus replication and is targeted by the viral nonstructural protein 1. J Virol 89:10115–10119. https://doi.org/10.1128/JVI.01076-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Drappier M, Michiels T (2015) Inhibition of the OAS/RNase L pathway by viruses. Curr Opin Virol 15:19–26. https://doi.org/10.1016/j.coviro.2015.07.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work received funds from the Scientific Research Foundation of the Programs for Science and Technology Development of Henan Province, China (Grant No. 162102110033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengmeng Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Ma, H., Kang, Y. et al. Molecular Cloning and Identification of the 2′–5′ Oligoadenylate Synthetase 2 Gene in Chinese Domestic Pigs Through Bioinformatics Analysis, and Determination of Its Antiviral Activity Against Porcine Reproductive and Respiratory Syndrome Virus Infection. Indian J Microbiol 58, 332–344 (2018). https://doi.org/10.1007/s12088-018-0731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0731-3

Keywords

Navigation