Skip to main content
Log in

Potential of Marine-Derived Fungi to Remove Hexavalent Chromium Pollutant from Culture Broth

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Chromium (Cr) released from industrial units such as tanneries, textile and electroplating industries is detrimental to the surrounding ecosystems and human health. The focus of the present study was to check the Cr(VI) removal efficiency by marine-derived fungi from liquid broth. Amongst the three Cr(VI) tolerant isolates, #NIOSN-SK56-S19 (Aspergillus sydowii) showed Cr-removal efficiency of 0.01 mg Cr mg−1 biomass resulting in 26% abatement of total Cr with just 2.8 mg of biomass produced during the growth in 300 ppm Cr(VI). Scanning Electron Microscopy revealed aggregation of mycelial biomass with exopolysaccharide, while Electron Dispersive Spectroscopy showed the presence of Cr2O3 inside the biomass indicating presence of active Cr(VI) removal mechanisms. This was further supported when the Cr(VI) removal was monitored using DPC (1,5-diphenylcarbazide) method. The results of this study point to the potential of marine-derived fungal isolates for Cr(VI) removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beveridge TJ, Hughes MN, Leung KT, Poole RK, Savvaidis I, Silver S, Trevors JT (1997) Metal-microbe interactions: contemporary approaches. Adv Microb Physiol 38:177–243

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad I, Ansari MI, Aqil F (2006) Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Indian J Exp Biol 44:73–76

    CAS  PubMed  Google Scholar 

  3. Hasan HAH (2007) Role of rock phosphate in alleviation of heavy metals stress on Fusarium oxysporum. Plant Soil Environ 53:1–6

    Article  CAS  Google Scholar 

  4. Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 51:482–487. https://doi.org/10.1007/s12088-011-0110-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bishnoi NR, Garima (2005) Fungus- an alternative for bioremediation of heavy metal containing wastewater: a review. J Sci Ind Res India 64:93–100

    CAS  Google Scholar 

  6. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Biol 53:1–11. https://doi.org/10.1093/jexbot/53.366.1

    CAS  Google Scholar 

  7. Bellion M, Courbot M, Jacob C, Blaudez Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi—a minireview. FEMS Microbiol Lett 254:173–181. https://doi.org/10.1111/j.1574-6968.2005.00044.x

    Article  CAS  PubMed  Google Scholar 

  8. Borut P, Istvan P, Peter R, Pesti M (2010) Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol 50:21–36. https://doi.org/10.1002/jobm.200900170

    Article  Google Scholar 

  9. Nazareth S, Gaitonde S, Marbaniang T (2012) Metal resistance of halotolerant fungi from mangroves and salterns of Goa, India. Kavaka 40:15–21

    Google Scholar 

  10. Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi: a review. Mycol Res 113:1231–1241. https://doi.org/10.1016/j.mycres.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  11. Hamedi J, Fatemeh M, Hamed KSP (2015) Biotechnological exploitation of actinobacterial members. In: Maheshwari DK, Saraf M (eds) Halophiles—biodiversity and sustainable exploitation. Springer, Switzerland. https://doi.org/10.1007/978-3-319-14595-2

    Google Scholar 

  12. Rulcker CK, Allard B, Schnurer J (1993) Interactions between a soil fungus, Trichoderma harzianum, and IIb metals-adsorption of mycelium and production of complexing metabolites. Biometals 6:223–230. https://doi.org/10.1007/BF00187759

    Google Scholar 

  13. Parvathi K, Nareshkumar R, Nagendran R (2007) Biosorption of manganese by Aspergillus niger and Saccharomyces cerevisiae. World J Microbiol Biot 23:671–676. https://doi.org/10.1007/s11274-006-9281-7

    Article  CAS  Google Scholar 

  14. Subbaiah MV, Yun YS (2013) Biosorption of nickel (II) from aqueous solution by the fungal mat of Trametes versicolor (Rainbow) biomass: equilibrium, kinetics, and thermodynamic studies. Biotechnol Bioprocess Eng 18:280–288. https://doi.org/10.1007/s12257-012-0401-y

    Article  CAS  Google Scholar 

  15. Akhtar S, Hassan MM, Ahmad R, Suthor V, Yasin M (2013) Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ 32:55–62

    CAS  Google Scholar 

  16. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (eds) PCR protocols: a guide to methods and applications. Academic Press, New York. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

    Google Scholar 

  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hseu ZY (2004) Evaluating heavy metal contents in nine composts using four digestion methods. Biores Technol 95:53–59. https://doi.org/10.1016/j.biortech.2004.02.008

    Article  CAS  Google Scholar 

  20. Pfalaum R, Howick L (1956) The chromium-diphenylcarbazide reaction. J Am Chem Soc 78:4862–4866. https://doi.org/10.1021/ja01600a014

    Article  Google Scholar 

  21. Damare VS (2015) Diversity of thraustochytrid protists isolated from brown alga, Sargassum cinereum using 18S rDNA sequencing and their morphological response to heavy metals. J Mar Biol Assoc UK 95:265–276. https://doi.org/10.1017/S0025315414001696

    Article  CAS  Google Scholar 

  22. Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278. https://doi.org/10.1007/s003740000319

    Article  CAS  Google Scholar 

  23. Raghukumar S, Raghukumar C, Manohar CS (2014) Fungi living in diverse extreme habitats of the marine environment. Kavaka 42:145–153

    Google Scholar 

  24. Chakraborty P, Ramteke D, Chakraborty S (2015) Geochemical partitioning of Cu and Ni in mangrove sediments: relationships with their bioavailability. Mar Pollut Bull 93:194–201. https://doi.org/10.1016/j.marpolbul.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  25. Nayak SS, Gonsalves V, Nazareth SW (2012) Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa-India. Indian J Geomar Sci 41:164–172

    CAS  Google Scholar 

  26. Babich H, Gamba-Vitalo C, Stotsky G (1982) Comparative toxicity of nickel to mycelia proliferation and spore formation of selected fungi. Arch Environ Contam Toxicol 11:465–468

    Article  CAS  Google Scholar 

  27. Al-Abboud MA, Alawlaqi MM (2011) Biouptake of copper and their impact on fungal fatty acids. Aust J Basic Appl Sci 5:283–290

    CAS  Google Scholar 

  28. Zapotoczny S, Jurkiewicz A, Tylko G, Anielska T, Turnau K (2007) Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol Res 162:219–228. https://doi.org/10.1016/j.micres.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  29. Valix M, Loon LO (2003) Adaptive tolerance behaviour of fungi in heavy metals. Miner Eng 16:193–198. https://doi.org/10.1016/S0892-6875(03)00004-9

    Article  CAS  Google Scholar 

  30. Rajapaksha RMCP, Tobor-Kaplon MA, Baath E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973. https://doi.org/10.1128/AEM.70.5.2966-2973.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akthar MN, Sastry KS, Mohan PM (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9:21–28. https://doi.org/10.1007/BF00188086

    Article  CAS  Google Scholar 

  32. Faryal R, Lodhi A, Hameed A (2006) Isolation, Characterization and biosorption of Zinc by indigenous fungal strains Aspergillus fumigatus RH05 and Aspergillus flavus RH07. Pak J Bot 38:817–832

    Google Scholar 

  33. Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals : a review. J Chem Sci Technol 3:74–102

    Google Scholar 

  34. Merrie JS, Sheela R, Saswathi N, Prakasham RS, Ramakrishna SV (1998) Biosorption of chromium VI using Rhizopus arrhizus. Indian J Exp Biol 36:1052–1055

    Google Scholar 

  35. Jakubiak M, Giska I, Asztemborska M, Bystrzejewska-Piotrowska G (2014) Bioaccumulation and biosorption of inorganic nanoparticles: factors affecting the efficiency of nanoparticle mycoextraction by liquid- grown mycelia of Pleurotus eryngii and Trametes versicolor. Mycol Prog 13:525–532. https://doi.org/10.1007/s11557-013-0933-3

    Article  Google Scholar 

  36. Coogeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277. https://doi.org/10.1016/j.jhazmat.2006.12.017

    Article  Google Scholar 

  37. Sen M (2012) A comparative study on biosorption of Cr(VI) by Fusarium solani under different growth conditions. Open J Appl Sci 2:146–152. https://doi.org/10.4236/ojapps.2012.23021

    Article  Google Scholar 

  38. Annamalai K, Nair AM, Chinnaraju S, Kuppusamy S (2014) Chromium (III) nanoparticles synthesis using the biosorption and bioreduction with Bacillus subtilis: effect of pH and temperature. Int J ChemTech Res 6:1910–1912

    CAS  Google Scholar 

  39. Annamalai K, Nair AM, Chinnaraju S, Kuppusamy S (2014) Removal of chromium from contaminated effluent and simultaneously green nanoparticle synthesis using Bacillus subtilis. Malaya J Biosci 1:13–18

    CAS  Google Scholar 

  40. Chandra S, Kumar A (2013) Spectral, thermal and morphological studies of chromium nanoparticles. Spectrochim Acta A 102:250–255. https://doi.org/10.1016/j.saa.2012.10.003

    Article  CAS  Google Scholar 

  41. Jaswal VS, Arora AK, Kinger M, Gupta VD, Singh J (2014) Synthesis and characterization of chromium oxide nanoparticles. Orient J Chem 30:559–566. https://doi.org/10.13005/ojc/300220

    Article  CAS  Google Scholar 

  42. Mohite PT, Kumar AR, Zinjarde SS (2016) Biotransformation of hexavalent chromium into extracellular chromium (III) oxide nanoparticles using Schwanniomyces occidentalis. Biotechnol Lett 38:441–446. https://doi.org/10.1007/s10529-015-2009-8

    Article  CAS  PubMed  Google Scholar 

  43. Focardi S, Pepi M, Focardi SE (2013) Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. In: Chamy R, Rosenkranz F (eds) Biodegradation-life of science. InTech, Rijeka, pp 321–347. https://doi.org/10.5772/56365

    Google Scholar 

  44. Baldrian P, Gabriel J (2003) Adsorption of heavy metal on microbial biomass: Use of biosorption for removal metals from metal solutions. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions, vol 19. Springer, Dordrecht

    Google Scholar 

  45. White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radio nuclides. Int Biodeterior Biodegrad. https://doi.org/10.1016/0964-8305(95)00036-5

    Google Scholar 

  46. Liu Y, Lam MC, Fang HHP (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 43:59–66

    CAS  PubMed  Google Scholar 

  47. Faisal M, Hasnain S (2004) Comparative study of Cr(VI) uptake and reduction in industrial effluent by Ochrobactrum intermedium and Brevibacterium sp. Biotechnol Lett 26:1623–1628

    Article  CAS  PubMed  Google Scholar 

  48. Wang YT, Shen H (1995) Bacterial reduction of hexavalent chromium. J Ind Microbiol 14:159–163. https://doi.org/10.1007/BF01569898

    Article  CAS  PubMed  Google Scholar 

  49. Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427. https://doi.org/10.1016/S0269-7491(98)00174-2

    Article  CAS  Google Scholar 

  50. Sudha BR, Abraham TE (2001) Biosorption of Cr(VI) from aqueous solution by Rhizopus nigricans. Bioresour Technol 79:73–81. https://doi.org/10.1016/S0960-8524(00)00107-3

    Article  Google Scholar 

  51. Kumar R, Singh P, Dhir B, Sharma AK, Mehta D (2014) Potential of some fungal and bacterial species in bioremediation of heavy metals. J Nucl Phys 1:213–223. https://doi.org/10.15415/jnp.2014.12017

    Google Scholar 

Download references

Acknowledgements

The first author is thankful to Council of Scientific and Industrial Research (CSIR) for the fellowship (Ref No.: 18-12/2011(ii)EU-V). All the authors are thankful to Head, BOD and Director, CSIR-NIO for the facilities. The studies were funded through the Project PSC0206. The authors are thankful to Mr. Areef Sardar for carrying out SEM and EDS analysis. This work is part of the doctoral thesis to be submitted to Goa University in Department of Microbiology. The manuscript is NIO contribution No. 6186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir R. Damare.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotlikar, N.P., Damare, S.R., Meena, R.M. et al. Potential of Marine-Derived Fungi to Remove Hexavalent Chromium Pollutant from Culture Broth. Indian J Microbiol 58, 182–192 (2018). https://doi.org/10.1007/s12088-018-0719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0719-z

Keywords

Navigation