Skip to main content
Log in

Tackling Salmonella Persister Cells by Antibiotic–Nisin Combination via Mannitol

  • Short Communication
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial persisters (defined as dormant, non-dividing cells with globally reduced metabolism) are the major cause of recurrent infections. As they neither grow nor die in presence of antibiotics, it is difficult to eradicate these cells using antibiotics, even at higher concentrations. Reports of metabolites (which help in waking up of these inactive cells) enabled eradication of bacterial persistence by aminoglycosides, suggest the new potential strategy to improve antibiotic therapy. Here we propose, mannitol enabled elimination of Salmonella persister cells by the nisin–antibiotic combination. For this, persister cells were developed and characterized for their typical properties such as non-replicative state and metabolic dormancy. Different carbon sources viz. glucose, glycerol, and mannitol were used, each as an adjunct to ampicillin for the eradication of persister cells. The maximum (but not complete) killing was observed with mannitol–ampicillin, out of all the combinations used. However, significant elimination (about 78%) could be observed, when nisin (an antimicrobial peptide) was used with ampicillin in presence of mannitol, which might have mediated the transfer of antibiotic–nisin combination at the same time when the cells tried to grab the carbon molecule. Further, the effectiveness of the trio was confirmed by flow cytometry. Overall, our findings highlight the potential of this trio-combination for developing it as an option for tackling Salmonella persister cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Parry SM, Palmer SR, Slader J, Humphrey T, South East Wales Infectious Disease Liaison Group (2002) Risk factors for Salmonella food poisoning in the domestic kitchen—a case control study. Epidemiol Infect 129:277–285. https://doi.org/10.1017/S0950268802007331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Helaine S, Kugelberg E (2014) Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 22:417–424. https://doi.org/10.1016/j.tim.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  3. Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A, Hare SA, Helaine S (2016) A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell 63:86–96. https://doi.org/10.1016/j.molcel.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575. https://doi.org/10.3390/ph6121543

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh AP, Prabha V, Rishi P (2013) Value addition in the efficacy of conventional antibiotics by nisin against Salmonella. PLoS ONE 8:e76844. https://doi.org/10.1371/journal.pone.0076844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh AP, Prabha V, Rishi P (2014) Efficacy of cryptdin-2 as an adjunct to antibiotics from various generations against Salmonella. Indian J Microbiol 54:323–328. https://doi.org/10.1007/s12088014-0463-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hong SH, Wang X, O’Connor HF, Benedik MJ, Wood TK (2012) Bacterial persistence increases as environmental fitness decreases. Microb Biotechnol 5:509–522. https://doi.org/10.1111/j.1751-7915.2011.00327.x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bhargava N, Sharma P, Capalash N (2014) Pyocyanin stimulates quorum sensing mediated tolerance to oxidative stress and increases persister cells population in Acinetobacter baumannii. Infect Immun 82:3417–3425. https://doi.org/10.1128/IAI.01600-14

    Article  PubMed  PubMed Central  Google Scholar 

  9. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18. https://doi.org/10.1016/S03781097(03)00856-5

    Article  CAS  PubMed  Google Scholar 

  10. Silva-Herzog E, McDonald EM, Crooks AL, Detweiler CS (2015) Physiologic stresses reveal a Salmonella persister state and TA family toxins modulate tolerance to these stresses. PLoS ONE 10:e0141343. https://doi.org/10.1371/journal.pone.0141343

    Article  PubMed  PubMed Central  Google Scholar 

  11. Singh R, Ray P, Das A, Sharma M (2009) Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 58:1067–1073. https://doi.org/10.1099/jmm.0.009720-0

    Article  CAS  PubMed  Google Scholar 

  12. Shah D, Zhang Z, Khodursky AB, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53. https://doi.org/10.1186/1471-2180-6-53

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kaldalu N, Hauryliuk V, Tenson T (2016) Persisters as elusive as ever. Appl Microbiol Biotechnol 100:6545–6553. https://doi.org/10.1007/s00253-016-7648-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473(7346):216–220. https://doi.org/10.1038/nature10069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim JS, Heo P, Yang TJ, Lee KS, Cho DH, Kim BT, Suh JH, Lim HJ, Shin D, Kim SK, Kweon DH (2011) Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob Agents Chemother 55:5380–5383. https://doi.org/10.1128/AAC.00708-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orman MA, Brynildsen MP (2013) Establishment of a method to rapidly assay bacterial persister metabolism. Antimicrob Agents Chemother 57:4398–4409. https://doi.org/10.1128/AAC.00372-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffman LR, Richardson AR, Houston LS, Kulasekara HD, Martens-Habbena W, Klausen M, Burns JL, Stahl DA, Hassett DJ, Fang FC, Miller SI (2010) Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog 6:e1000712. https://doi.org/10.1371/journal.ppat.1000712

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barraud N, Buson A, Jarolimek W, Rice SA (2013) Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS ONE 8:e84220. https://doi.org/10.1371/journal.pone.0084220

    Article  PubMed  PubMed Central  Google Scholar 

  19. Singh AP, Preet S, Rishi P (2014) Nisin/β-lactam adjunct therapy against Salmonella enterica serovar Typhimurium: a mechanistic approach. J Antimicrob Chemother 69:1877–1887. https://doi.org/10.1093/jac/dku049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Microbiology, Panjab University Chandigarh for providing the facilities to carry out this work. The authors also acknowledge PURSE Grant from Department of Science and Technology, New Delhi, India, to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Rishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rishi, P., Bhagat, N.R., Thakur, R. et al. Tackling Salmonella Persister Cells by Antibiotic–Nisin Combination via Mannitol. Indian J Microbiol 58, 239–243 (2018). https://doi.org/10.1007/s12088-018-0713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0713-5

Keywords

Navigation